Abstract

Yb:LuAG ceramic is very promising for thin-disk laser and amplifier architectures since it exhibits a higher thermal conductivity at high doping concentrations and a larger emission cross section than Yb:YAG. In this Letter, we present what we believe to be the first demonstration of a thin-disk laser based on Yb:LuAG ceramic. A maximum output power of 101 W with an optical efficiency of 56% and a slope efficiency of 64% was obtained with a multimode laser resonator. Fundamental-mode laser operation with near diffraction limited beam quality (M21.22) was also achieved. The fundamental-mode laser resonator showed the output power of 49 W, an optical efficiency of 31%, and a slope efficiency of 44%. A linearly polarized output beam was demonstrated in multimode operation using an intracavity Brewster window. The depolarization loss was measured to be as low as 0.15% per round trip.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Yb3+-doped ceramic thin-disk lasers of Lu-based oxides

Hiroaki Nakao, Tatsuya Inagaki, Akira Shirakawa, Ken-ichi Ueda, Hideki Yagi, Takagimi Yanagitani, Alexander A. Kaminskii, Birgit Weichelt, Katrin Wentsch, Marwan Abdou Ahmed, and Thomas Graf
Opt. Mater. Express 4(10) 2116-2121 (2014)

Sub-picosecond regenerative amplifier of Yb-doped Y2O3 ceramic thin disk

Momoko Maruyama, Hajime Okada, Yoshihiro Ochi, and Keisuke Nagashima
Opt. Express 24(2) 1685-1692 (2016)

CW and mode-locked operation of Yb3+-doped Lu3Al5O12 ceramic laser

Hiroaki Nakao, Akira Shirakawa, Ken-ichi Ueda, Hideki Yagi, and Takagimi Yanagitani
Opt. Express 20(14) 15385-15391 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription