Abstract

A fiber Bragg grating (FBG)-based probe is developed by designing a novel double fiber structure to make the probe sensitive to both axial and radial contact displacements. A matched FBG pair interrogation system for the probe is modeled, and the best matched initial condition is found to make the probing system work in the linear and most sensitive mode. Actual measurements of ring gauges and fuel injection nozzles indicate that, for a microhole with an aspect ratio of greater than 141, an axial resolution of 8 nm and a radial resolution of 30 nm can be achieved with the developed probe. It is therefore concluded that the double fiber probe with a single FBG developed can be used to measure high aspect ratio microholes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Masuzawa, Y. Hamasaki, and M. Fujino, Ann. CIRP 42, 589 (1993).
    [CrossRef]
  2. G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
    [CrossRef]
  3. J. Cui, L. Li, and J. Tan, Opt. Lett. 36, 23 (2011).
    [CrossRef]
  4. E. Liangpanich, N. Akiyama, M. Yoshida, and K. Kuwabara, Opt. Eng. 42, 2568 (2003).
    [CrossRef]
  5. C.-C. Kao and A. J. Shih, Meas. Sci. Technol. 18, 3603 (2007).
    [CrossRef]
  6. J. Tan, F. Wang, and J. Cui, Opt. Express 18, 2925 (2010).
    [CrossRef]
  7. E. Peiner and L. Doering, IEEE Sens. J. 13, 701 (2013).
    [CrossRef]
  8. H. Ji, H.-Y. Hsu, L. X. Kong, and A. B. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
    [CrossRef]
  9. F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
    [CrossRef]
  10. J. Cui, K. Feng, S. Zhu, Y. Zhang, Y. Hu, and J. Tan, J. Mod. Opt. 21, 2001 (2013).
    [CrossRef]
  11. S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors (Taylor & Francis, 2010), Chap. 7.
  12. H. Lin, L. Ma, Y. Hu, Z. Hu, and Q. Yao, Opt. Lasers Eng. 51, 822 (2013).
    [CrossRef]

2013

E. Peiner and L. Doering, IEEE Sens. J. 13, 701 (2013).
[CrossRef]

J. Cui, K. Feng, S. Zhu, Y. Zhang, Y. Hu, and J. Tan, J. Mod. Opt. 21, 2001 (2013).
[CrossRef]

H. Lin, L. Ma, Y. Hu, Z. Hu, and Q. Yao, Opt. Lasers Eng. 51, 822 (2013).
[CrossRef]

2012

F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
[CrossRef]

2011

J. Cui, L. Li, and J. Tan, Opt. Lett. 36, 23 (2011).
[CrossRef]

2010

2009

H. Ji, H.-Y. Hsu, L. X. Kong, and A. B. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
[CrossRef]

2007

C.-C. Kao and A. J. Shih, Meas. Sci. Technol. 18, 3603 (2007).
[CrossRef]

2006

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[CrossRef]

2003

E. Liangpanich, N. Akiyama, M. Yoshida, and K. Kuwabara, Opt. Eng. 42, 2568 (2003).
[CrossRef]

1993

T. Masuzawa, Y. Hamasaki, and M. Fujino, Ann. CIRP 42, 589 (1993).
[CrossRef]

Akiyama, N.

E. Liangpanich, N. Akiyama, M. Yoshida, and K. Kuwabara, Opt. Eng. 42, 2568 (2003).
[CrossRef]

Chen, L.

F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
[CrossRef]

Cui, J.

J. Cui, K. Feng, S. Zhu, Y. Zhang, Y. Hu, and J. Tan, J. Mod. Opt. 21, 2001 (2013).
[CrossRef]

J. Cui, L. Li, and J. Tan, Opt. Lett. 36, 23 (2011).
[CrossRef]

J. Tan, F. Wang, and J. Cui, Opt. Express 18, 2925 (2010).
[CrossRef]

Dai, G.

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[CrossRef]

Danzebrink, H.-U.

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[CrossRef]

Doering, L.

E. Peiner and L. Doering, IEEE Sens. J. 13, 701 (2013).
[CrossRef]

Fei, Y.

F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
[CrossRef]

Feng, K.

J. Cui, K. Feng, S. Zhu, Y. Zhang, Y. Hu, and J. Tan, J. Mod. Opt. 21, 2001 (2013).
[CrossRef]

Fujino, M.

T. Masuzawa, Y. Hamasaki, and M. Fujino, Ann. CIRP 42, 589 (1993).
[CrossRef]

Hamasaki, Y.

T. Masuzawa, Y. Hamasaki, and M. Fujino, Ann. CIRP 42, 589 (1993).
[CrossRef]

Hsu, H.-Y.

H. Ji, H.-Y. Hsu, L. X. Kong, and A. B. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
[CrossRef]

Hu, Y.

J. Cui, K. Feng, S. Zhu, Y. Zhang, Y. Hu, and J. Tan, J. Mod. Opt. 21, 2001 (2013).
[CrossRef]

H. Lin, L. Ma, Y. Hu, Z. Hu, and Q. Yao, Opt. Lasers Eng. 51, 822 (2013).
[CrossRef]

Hu, Z.

H. Lin, L. Ma, Y. Hu, Z. Hu, and Q. Yao, Opt. Lasers Eng. 51, 822 (2013).
[CrossRef]

Ji, H.

H. Ji, H.-Y. Hsu, L. X. Kong, and A. B. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
[CrossRef]

Kao, C.-C.

C.-C. Kao and A. J. Shih, Meas. Sci. Technol. 18, 3603 (2007).
[CrossRef]

Koenders, L.

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[CrossRef]

Kong, L. X.

H. Ji, H.-Y. Hsu, L. X. Kong, and A. B. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
[CrossRef]

Kuwabara, K.

E. Liangpanich, N. Akiyama, M. Yoshida, and K. Kuwabara, Opt. Eng. 42, 2568 (2003).
[CrossRef]

Li, L.

J. Cui, L. Li, and J. Tan, Opt. Lett. 36, 23 (2011).
[CrossRef]

Liangpanich, E.

E. Liangpanich, N. Akiyama, M. Yoshida, and K. Kuwabara, Opt. Eng. 42, 2568 (2003).
[CrossRef]

Lin, H.

H. Lin, L. Ma, Y. Hu, Z. Hu, and Q. Yao, Opt. Lasers Eng. 51, 822 (2013).
[CrossRef]

Liu, F.

F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
[CrossRef]

Ma, L.

H. Lin, L. Ma, Y. Hu, Z. Hu, and Q. Yao, Opt. Lasers Eng. 51, 822 (2013).
[CrossRef]

Masuzawa, T.

T. Masuzawa, Y. Hamasaki, and M. Fujino, Ann. CIRP 42, 589 (1993).
[CrossRef]

Peiner, E.

E. Peiner and L. Doering, IEEE Sens. J. 13, 701 (2013).
[CrossRef]

Pohlenz, F.

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[CrossRef]

Ruffin, P. B.

S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors (Taylor & Francis, 2010), Chap. 7.

Shih, A. J.

C.-C. Kao and A. J. Shih, Meas. Sci. Technol. 18, 3603 (2007).
[CrossRef]

Tan, J.

J. Cui, K. Feng, S. Zhu, Y. Zhang, Y. Hu, and J. Tan, J. Mod. Opt. 21, 2001 (2013).
[CrossRef]

J. Cui, L. Li, and J. Tan, Opt. Lett. 36, 23 (2011).
[CrossRef]

J. Tan, F. Wang, and J. Cui, Opt. Express 18, 2925 (2010).
[CrossRef]

Wang, F.

Wedding, A. B.

H. Ji, H.-Y. Hsu, L. X. Kong, and A. B. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
[CrossRef]

Wilkening, G.

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[CrossRef]

Xia, H.

F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
[CrossRef]

Xu, M.

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[CrossRef]

Yao, Q.

H. Lin, L. Ma, Y. Hu, Z. Hu, and Q. Yao, Opt. Lasers Eng. 51, 822 (2013).
[CrossRef]

Yin, S.

S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors (Taylor & Francis, 2010), Chap. 7.

Yoshida, M.

E. Liangpanich, N. Akiyama, M. Yoshida, and K. Kuwabara, Opt. Eng. 42, 2568 (2003).
[CrossRef]

Yu, F. T. S.

S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors (Taylor & Francis, 2010), Chap. 7.

Zhang, Y.

J. Cui, K. Feng, S. Zhu, Y. Zhang, Y. Hu, and J. Tan, J. Mod. Opt. 21, 2001 (2013).
[CrossRef]

Zhu, S.

J. Cui, K. Feng, S. Zhu, Y. Zhang, Y. Hu, and J. Tan, J. Mod. Opt. 21, 2001 (2013).
[CrossRef]

Ann. CIRP

T. Masuzawa, Y. Hamasaki, and M. Fujino, Ann. CIRP 42, 589 (1993).
[CrossRef]

IEEE Sens. J.

E. Peiner and L. Doering, IEEE Sens. J. 13, 701 (2013).
[CrossRef]

J. Mod. Opt.

J. Cui, K. Feng, S. Zhu, Y. Zhang, Y. Hu, and J. Tan, J. Mod. Opt. 21, 2001 (2013).
[CrossRef]

Meas. Sci. Technol.

H. Ji, H.-Y. Hsu, L. X. Kong, and A. B. Wedding, Meas. Sci. Technol. 20, 095304 (2009).
[CrossRef]

F. Liu, Y. Fei, H. Xia, and L. Chen, Meas. Sci. Technol. 23, 054002 (2012).
[CrossRef]

G. Dai, F. Pohlenz, M. Xu, L. Koenders, H.-U. Danzebrink, and G. Wilkening, Meas. Sci. Technol. 17, 545 (2006).
[CrossRef]

C.-C. Kao and A. J. Shih, Meas. Sci. Technol. 18, 3603 (2007).
[CrossRef]

Opt. Eng.

E. Liangpanich, N. Akiyama, M. Yoshida, and K. Kuwabara, Opt. Eng. 42, 2568 (2003).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

H. Lin, L. Ma, Y. Hu, Z. Hu, and Q. Yao, Opt. Lasers Eng. 51, 822 (2013).
[CrossRef]

Opt. Lett.

J. Cui, L. Li, and J. Tan, Opt. Lett. 36, 23 (2011).
[CrossRef]

Other

S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors (Taylor & Francis, 2010), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Stress distribution in the fixed end of FBG probes for a radial contact displacement of 10 μm along axis x: (a) conventional FBG probe and (b) DS-FBG probe.

Fig. 2.
Fig. 2.

Schematic diagram of the DS-FBG probing system: rest status (left) and contact status (right).

Fig. 3.
Fig. 3.

Fabrication of the DS-FBG probe.

Fig. 4.
Fig. 4.

Principle of the matched FBG pair interrogation system.

Fig. 5.
Fig. 5.

Output characteristics of the DS-FBG probe along three axes.

Fig. 6.
Fig. 6.

Output characteristics of the DS-FBG probe with the interrogation system working in linear mode.

Fig. 7.
Fig. 7.

Resolution of DS-FBG probe: (a) axial resolution along axis z and (b) radial resolution along axis x.

Fig. 8.
Fig. 8.

Experiments on the DS-FBG probe: (a) measurement of ring gauges and (b) measurement of injection nozzles.

Tables (1)

Tables Icon

Table 1. Parameters of M-FBG and R-FBG

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ii(λ)=exp[4ln2(λλiΔλi)2],
R(λ1,λ2)=+exp[4ln2(λλ1Δλ1)2]exp[4ln2(λλ2Δλ2)2]dλ+exp[4ln2(λλ1Δλ1)2]dλ=exp[4ln2(λ1λ2)2Δλ12+Δλ22]Δλ1(1Δλ12+1Δλ22).
2R(λ1,λ2)λ22=8ln2[8ln2(λ1λ2)2(Δλ12+Δλ22)]exp[4ln2(λ1λ2)2Δλ12+Δλ22]Δλ1(Δλ12+Δλ22)(1Δλ12+1Δλ22).
Δλ=|λ1λ2|=Δλ12+Δλ228ln2.

Metrics