Abstract

The transport-of-intensity equation (TIE) is applied in the reconstruction of two interfering wavefronts by analyzing the interference patterns and their derivatives along their common propagation directions. The TIE is extended from one wave to two waves and is then applied to calculate the phase of the interference field. Finally, the phase shift concept is applied to reconstruct the phase distribution of two waves. The consistency of the method is verified by simulation.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Application of the transport of intensity equation in determination of nonlinear refractive index

Roghayeh Yazdani, Morteza Hajimahmoodzadeh, and Hamid R. Fallah
Appl. Opt. 53(35) 8295-8301 (2014)

Optimum plane selection for transport-of-intensity-equation-based solvers

J. Martinez-Carranza, K. Falaggis, and T. Kozacki
Appl. Opt. 53(30) 7050-7058 (2014)

Fast and accurate phase-unwrapping algorithm based on the transport of intensity equation

Juan Martinez-Carranza, Konstantinos Falaggis, and Tomasz Kozacki
Appl. Opt. 56(25) 7079-7088 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription