Abstract

We propose a new multi-projection integral imaging scheme using a convex mirror array. In the proposed scheme, to overcome the resolution limitation of the conventional method due to observing the single aperture imaging point (AIP) from each convex mirror, we introduce the multi-projection to obtain multiple AIPs per convex mirror so that the viewer observes the resolution-improved 3D reconstructed images. We validate the theoretical analysis of the proposed scheme and confirm its feasibility through the optical experiments. To our best knowledge, this is the first report to generate multiple AIPs per convex mirror in a projection integral imaging system.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Stern and B. Javidi, Proc. IEEE 94, 591 (2006).
    [CrossRef]
  2. F. Okano, J. Arai, H. Hoshino, and I. Yuyama, Opt. Eng. 38, 1072 (1999).
    [CrossRef]
  3. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, Proc. IEEE 97, 1067 (2009).
    [CrossRef]
  4. M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, Proc. IEEE 99, 556 (2011).
    [CrossRef]
  5. K. Wakunami, M. Yamaguchi, and B. Javidi, Opt. Lett. 37, 5103 (2012).
    [CrossRef]
  6. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, Appl. Opt. 52, 546 (2013).
    [CrossRef]
  7. M. Cho and D. Shin, J. Opt. Soc. Korea 17, 410 (2013).
    [CrossRef]
  8. J. S. Jang and B. Javidi, Opt. Express 12, 1077 (2004).
    [CrossRef]
  9. J. S. Jang, Y. S. Oh, and B. Javidi, Opt. Express 12, 557 (2004).
    [CrossRef]
  10. H. Liao, M. Iwahara, N. Hata, and T. Dohi, Opt. Express 12, 1067 (2004).
    [CrossRef]
  11. M. Okui, J. Arai, Y. Nojiri, and F. Okano, Appl. Opt. 45, 9132 (2006).
    [CrossRef]
  12. Y. Kim, S. G. Park, S.-W. Min, and B. Lee, Appl. Opt. 48, H71 (2009).
    [CrossRef]
  13. Y. Kim, S. G. Park, S.-W. Min, and B. Lee, Appl. Opt. 50, B18 (2011).
    [CrossRef]
  14. L. Zhang, Y. Yang, X. Zhao, Z. Fang, and X. Yuan, Opt. Express 20, 26021 (2012).
    [CrossRef]
  15. J.-Y. Jang, D. Shin, and E.-S. Kim, Opt. Express 22, 1533 (2014).
    [CrossRef]

2014

2013

2012

2011

Y. Kim, S. G. Park, S.-W. Min, and B. Lee, Appl. Opt. 50, B18 (2011).
[CrossRef]

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, Proc. IEEE 99, 556 (2011).
[CrossRef]

2009

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, Proc. IEEE 97, 1067 (2009).
[CrossRef]

Y. Kim, S. G. Park, S.-W. Min, and B. Lee, Appl. Opt. 48, H71 (2009).
[CrossRef]

2006

2004

1999

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, Opt. Eng. 38, 1072 (1999).
[CrossRef]

Arai, J.

M. Okui, J. Arai, Y. Nojiri, and F. Okano, Appl. Opt. 45, 9132 (2006).
[CrossRef]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, Opt. Eng. 38, 1072 (1999).
[CrossRef]

Cho, M.

M. Cho and D. Shin, J. Opt. Soc. Korea 17, 410 (2013).
[CrossRef]

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, Proc. IEEE 99, 556 (2011).
[CrossRef]

Daneshpanah, M.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, Proc. IEEE 99, 556 (2011).
[CrossRef]

Dohi, T.

Fang, Z.

Hata, N.

Hoshino, H.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, Opt. Eng. 38, 1072 (1999).
[CrossRef]

Iwahara, M.

Jang, J. S.

Jang, J.-Y.

Javidi, B.

Kim, E.-S.

Kim, Y.

Lee, B.

Liao, H.

Martinez-Corral, M.

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, Appl. Opt. 52, 546 (2013).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, Proc. IEEE 97, 1067 (2009).
[CrossRef]

Martinez-Cuenca, R.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, Proc. IEEE 97, 1067 (2009).
[CrossRef]

Min, S.-W.

Moon, I.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, Proc. IEEE 99, 556 (2011).
[CrossRef]

Nojiri, Y.

Oh, Y. S.

Okano, F.

M. Okui, J. Arai, Y. Nojiri, and F. Okano, Appl. Opt. 45, 9132 (2006).
[CrossRef]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, Opt. Eng. 38, 1072 (1999).
[CrossRef]

Okui, M.

Park, S. G.

Saavedra, G.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, Proc. IEEE 97, 1067 (2009).
[CrossRef]

Shin, D.

Stern, A.

Wakunami, K.

Xiao, X.

Yamaguchi, M.

Yang, Y.

Yuan, X.

Yuyama, I.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, Opt. Eng. 38, 1072 (1999).
[CrossRef]

Zhang, L.

Zhao, X.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed MPII scheme.

Fig. 2.
Fig. 2.

Geometrical relationship between the aperture of the projection system and its AIPs in the CMA: (a) integrated point located in the virtual field and (b) integrated point located in the real field.

Fig. 3.
Fig. 3.

Relationship between projection system and AIPs: (a) conventional SPII method and (b) proposed MPII method.

Fig. 4.
Fig. 4.

Graph of the distance between AIPs.

Fig. 5.
Fig. 5.

(a) 2×2 multi-projection system, (b) CMA, (c) elemental image array, and (d) example of the reconstructed 3D object image.

Fig. 6.
Fig. 6.

Reconstructed 3D object images: (a) the conventional SPII method and (b) the proposed MPII method.

Fig. 7.
Fig. 7.

3D object images reconstructed at the different viewing directions in the proposed MPII.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

xIpn=xp+zpzpf[(n12)Pxp].
zIp=zpfzpf.
ΔxIp=Δxp(1zpzpf).

Metrics