Abstract

In this Letter, we demonstrate that the interplay between Raman pump relative intensity noise and cross-phase modulation leads to a relative phase noise (RPN) that brings non-negligible performance degradation to coherent optical orthogonal frequency-division multiplexing (CO-OFDM) transmission systems with co-pumped Raman amplification. By theoretical analysis and numerical simulation, we proved that RPN brings more system impairment in terms of Q-factor penalty than the single carrier system, and relatively larger walk-off between pump and signal helps to suppress the RPN induced impairment. A higher-order modulated signal is less tolerant to RPN than a lower-order signal. With the same spectral efficiency, the quadrature-amplitude modulation format shows better tolerance to RPN than phase-shift keying. The reported findings will be useful for the design and optimization of Raman amplified CO-OFDM multi-carrier transmission systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, IEEE LEOS Newsletter 23(1), 4 (2009).
  2. X. Zhou, L. Nelson, R. Issac, P. Magill, B. Zhu, and D. Peckham, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2A.2.
  3. J. Cheng, M. Tang, S. Fu, P. Shum, and D. Liu, Opt. Lett. 38, 1055 (2013).
    [CrossRef]
  4. C. Yang, F. Yang, and Z. Wang, Opt. Express 19, 17013 (2011).
    [CrossRef]
  5. B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, Opt. Express 18, 2137 (2010).
    [CrossRef]
  6. W. Shieh and I. Djordjevic, OFDM for Optical Communication (Academic, 2010).
  7. C. R. S. Fludger, V. Handerek, and R. J. Mears, J. Lightwave Technol. 20, 316 (2002).
    [CrossRef]
  8. W. Yan, Z. Tao, L. Li, L. Liu, S. Oda, T. Hoshida, and J. C. Rasmussen, in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuD5.
  9. X. Zhou, K. Long, R. Li, X. Yang, and Z. Zhang, Opt. Express 20, 7350 (2012).
    [CrossRef]
  10. X. Yi, S. William, and Y. Tang, IEEE Photon. Technol. Lett. 19, 919 (2007).
    [CrossRef]
  11. J. Cheng, M. Tang, S. Fu, P. Shum, D. Liu, M. Xiang, Z. Feng, and D. Yu, Opt. Express 22, 1257 (2014).
    [CrossRef]

2014 (1)

2013 (1)

2012 (1)

2011 (1)

2010 (1)

2009 (1)

P. J. Winzer, IEEE LEOS Newsletter 23(1), 4 (2009).

2007 (1)

X. Yi, S. William, and Y. Tang, IEEE Photon. Technol. Lett. 19, 919 (2007).
[CrossRef]

2002 (1)

Cheng, J.

Djordjevic, I.

W. Shieh and I. Djordjevic, OFDM for Optical Communication (Academic, 2010).

Feng, Z.

Fludger, C. R. S.

Fu, S.

Handerek, V.

Hoshida, T.

W. Yan, Z. Tao, L. Li, L. Liu, S. Oda, T. Hoshida, and J. C. Rasmussen, in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuD5.

Issac, R.

X. Zhou, L. Nelson, R. Issac, P. Magill, B. Zhu, and D. Peckham, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2A.2.

Li, L.

W. Yan, Z. Tao, L. Li, L. Liu, S. Oda, T. Hoshida, and J. C. Rasmussen, in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuD5.

Li, R.

Liu, B.

Liu, D.

Liu, L.

W. Yan, Z. Tao, L. Li, L. Liu, S. Oda, T. Hoshida, and J. C. Rasmussen, in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuD5.

Long, K.

Magill, P.

X. Zhou, L. Nelson, R. Issac, P. Magill, B. Zhu, and D. Peckham, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2A.2.

Mears, R. J.

Nelson, L.

X. Zhou, L. Nelson, R. Issac, P. Magill, B. Zhu, and D. Peckham, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2A.2.

Oda, S.

W. Yan, Z. Tao, L. Li, L. Liu, S. Oda, T. Hoshida, and J. C. Rasmussen, in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuD5.

Peckham, D.

X. Zhou, L. Nelson, R. Issac, P. Magill, B. Zhu, and D. Peckham, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2A.2.

Rasmussen, J. C.

W. Yan, Z. Tao, L. Li, L. Liu, S. Oda, T. Hoshida, and J. C. Rasmussen, in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuD5.

Shieh, W.

W. Shieh and I. Djordjevic, OFDM for Optical Communication (Academic, 2010).

Shum, P.

Tang, M.

Tang, Y.

X. Yi, S. William, and Y. Tang, IEEE Photon. Technol. Lett. 19, 919 (2007).
[CrossRef]

Tao, Z.

W. Yan, Z. Tao, L. Li, L. Liu, S. Oda, T. Hoshida, and J. C. Rasmussen, in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuD5.

Wang, Z.

William, S.

X. Yi, S. William, and Y. Tang, IEEE Photon. Technol. Lett. 19, 919 (2007).
[CrossRef]

Winzer, P. J.

P. J. Winzer, IEEE LEOS Newsletter 23(1), 4 (2009).

Xiang, M.

Xin, X.

Yan, W.

W. Yan, Z. Tao, L. Li, L. Liu, S. Oda, T. Hoshida, and J. C. Rasmussen, in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuD5.

Yang, C.

Yang, F.

Yang, X.

Yi, X.

X. Yi, S. William, and Y. Tang, IEEE Photon. Technol. Lett. 19, 919 (2007).
[CrossRef]

Yu, C.

Yu, D.

Yu, J.

Zhang, L.

Zhang, Q.

Zhang, Z.

Zhou, X.

X. Zhou, K. Long, R. Li, X. Yang, and Z. Zhang, Opt. Express 20, 7350 (2012).
[CrossRef]

X. Zhou, L. Nelson, R. Issac, P. Magill, B. Zhu, and D. Peckham, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2A.2.

Zhu, B.

X. Zhou, L. Nelson, R. Issac, P. Magill, B. Zhu, and D. Peckham, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2A.2.

IEEE LEOS Newsletter (1)

P. J. Winzer, IEEE LEOS Newsletter 23(1), 4 (2009).

IEEE Photon. Technol. Lett. (1)

X. Yi, S. William, and Y. Tang, IEEE Photon. Technol. Lett. 19, 919 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (4)

Opt. Lett. (1)

Other (3)

W. Yan, Z. Tao, L. Li, L. Liu, S. Oda, T. Hoshida, and J. C. Rasmussen, in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuD5.

W. Shieh and I. Djordjevic, OFDM for Optical Communication (Academic, 2010).

X. Zhou, L. Nelson, R. Issac, P. Magill, B. Zhu, and D. Peckham, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2A.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

RPN transfer function for Raman amplifier with walk-off is 2ps/m, pump at 1450 nm, and signal at 1550 nm. The pump attenuation is 0.25dB/km, the signal attenuation is 0.2dB/km, and the length is 100 km for the co-pumping case (dotted line) and the counter-pumping case (solid line).

Fig. 2.
Fig. 2.

Phase samples of (a) one subcarrier of the OFDM employing 8PSK and (b) the RPN in the co-pumping case (with RPN variance 0.34rad2). Both are in 1 μs.

Fig. 3.
Fig. 3.

(a) OFDM frame structure and (b) the schematics of the transmitter, fiber link, and receiver.

Fig. 4.
Fig. 4.

Constellation of the received 8PSK-CO-OFDM signal (a) without RPN and (b) with RPN (with a variance equal to 0.34rad2).

Fig. 5.
Fig. 5.

Estimated Q-penalty versus pump RIN for 8PSK in the CO-OFDM system (solid line) at 2ps/m, 3ps/m, and 4ps/m walk-off parameters and in a single carrier system (dashed line) at a 2ps/m walk-off parameter. The symbol rate is 40GSam/s, and the linewidth of the signal laser and the LO are 100 KHz.

Fig. 6.
Fig. 6.

Estimated Q-penalty versus pump RIN for different order PSK signals,16QAM, and 8QAM. The walk-off parameter is 2ps/m for all, the symbol rate is 40GSam/s, and the linewidths of the signal laser and the LO are 100 KHz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

RPNs(f)=RINp(f)×αp2[αp2+(2πfd)2]×1+exp(2αpz)2cos(2πfdz)×exp(αpz)[1exp(2αpz)]2,
σRPN2=v1v2RPNs(f)*θ2df.

Metrics