Abstract

We demonstrate a sub-micron silica diaphragm-based fiber-tip Fabry–Perot interferometer for pressure sensing applications. The thinnest silica diaphragm, with a thickness of 320nm, has been achieved by use of an improved electrical arc discharge technique. Such a sub-micron silica diaphragm breaks the sensitivity limitation imposed by traditional all-silica Fabry–Perot interferometric pressure sensors and, as a result, a high pressure sensitivity of 1036pm/MPa at 1550 nm and a low temperature cross-sensitivity of 960Pa/°C are achieved when a silica diaphragm of 500nm in thickness is used. Moreover, the all-silica spherical structure enhanced the mechanical strength of the micro-cavity sensor, making it suitable for high sensitivity pressure sensing in harsh environments.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, Opt. Fiber Technol. 12, 227 (2006).
    [CrossRef]
  2. Y. Wang, D. N. Wang, W. Jin, and X. Fang, IEEE J. Quantum Electron. 42, 868 (2006).
    [CrossRef]
  3. D. Donlagic and E. Cibula, Opt. Lett. 30, 2071 (2005).
    [CrossRef]
  4. Y. Z. Zhu and A. B. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
    [CrossRef]
  5. W. H. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. W. Wang, Opt. Express 18, 9006 (2010).
    [CrossRef]
  6. H. Bae and M. Yu, Opt. Express 20, 14573 (2012).
    [CrossRef]
  7. G. Guo, T. Fink, M. Han, L. Koester, T. Turner, and J. Huang, Opt. Lett. 37, 1505 (2012).
    [CrossRef]
  8. J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, Opt. Lett. 37, 2493 (2012).
    [CrossRef]
  9. Y. Wang, D. N. Wang, C. Wang, and T. Y. Hu, Opt. Express 21, 14084 (2013).
    [CrossRef]
  10. J. Ma, J. Ju, L. Jin, and W. Jin, IEEE Photon. Technol. Lett. 23, 1561 (2011).
    [CrossRef]
  11. C. Liao, T. Y. Hu, and D. N. Wang, Opt. Express 20, 22813 (2012).
    [CrossRef]
  12. C. Liao, L. Xu, C. Wang, D. N. Wang, Y. Wang, Q. Wang, K. Yang, Z. Li, X. Zhong, J. Zhou, and Y. Liu, Opt. Lett. 38, 4473 (2013).
    [CrossRef]
  13. Y. Rao, X. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, and I. Bennion, Chin. Phys. Lett. 18, 643 (2001).
    [CrossRef]
  14. Y. Wang, L. Xiao, D. N. Wang, and W. Jin, Opt. Lett. 31, 3414 (2006).
    [CrossRef]
  15. C. Liao, D. N. Wang, Y. Li, T. Sun, and K. T. V. Grattan, Appl. Opt. 48, 3001 (2009).
    [CrossRef]

2013 (2)

2012 (4)

2011 (1)

J. Ma, J. Ju, L. Jin, and W. Jin, IEEE Photon. Technol. Lett. 23, 1561 (2011).
[CrossRef]

2010 (1)

2009 (1)

2006 (3)

Y. Wang, L. Xiao, D. N. Wang, and W. Jin, Opt. Lett. 31, 3414 (2006).
[CrossRef]

Y. J. Rao, Opt. Fiber Technol. 12, 227 (2006).
[CrossRef]

Y. Wang, D. N. Wang, W. Jin, and X. Fang, IEEE J. Quantum Electron. 42, 868 (2006).
[CrossRef]

2005 (2)

Y. Z. Zhu and A. B. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
[CrossRef]

D. Donlagic and E. Cibula, Opt. Lett. 30, 2071 (2005).
[CrossRef]

2001 (1)

Y. Rao, X. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, and I. Bennion, Chin. Phys. Lett. 18, 643 (2001).
[CrossRef]

Bae, H.

Bennion, I.

Y. Rao, X. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, and I. Bennion, Chin. Phys. Lett. 18, 643 (2001).
[CrossRef]

Cibula, E.

Dai, J. Y.

Donlagic, D.

Fang, X.

Y. Wang, D. N. Wang, W. Jin, and X. Fang, IEEE J. Quantum Electron. 42, 868 (2006).
[CrossRef]

Fink, T.

Grattan, K. T. V.

Guo, G.

Han, M.

Ho, H. L.

Hu, T. Y.

Huang, J.

Jin, L.

J. Ma, J. Ju, L. Jin, and W. Jin, IEEE Photon. Technol. Lett. 23, 1561 (2011).
[CrossRef]

Jin, W.

J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, Opt. Lett. 37, 2493 (2012).
[CrossRef]

J. Ma, J. Ju, L. Jin, and W. Jin, IEEE Photon. Technol. Lett. 23, 1561 (2011).
[CrossRef]

Y. Wang, D. N. Wang, W. Jin, and X. Fang, IEEE J. Quantum Electron. 42, 868 (2006).
[CrossRef]

Y. Wang, L. Xiao, D. N. Wang, and W. Jin, Opt. Lett. 31, 3414 (2006).
[CrossRef]

Ju, J.

J. Ma, J. Ju, L. Jin, and W. Jin, IEEE Photon. Technol. Lett. 23, 1561 (2011).
[CrossRef]

Koester, L.

Li, Y.

Li, Z.

Liao, C.

Liu, Y.

Ma, J.

J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, Opt. Lett. 37, 2493 (2012).
[CrossRef]

J. Ma, J. Ju, L. Jin, and W. Jin, IEEE Photon. Technol. Lett. 23, 1561 (2011).
[CrossRef]

Niezrecki, C.

Ran, Z.

Y. Rao, X. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, and I. Bennion, Chin. Phys. Lett. 18, 643 (2001).
[CrossRef]

Rao, Y.

Y. Rao, X. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, and I. Bennion, Chin. Phys. Lett. 18, 643 (2001).
[CrossRef]

Rao, Y. J.

Y. J. Rao, Opt. Fiber Technol. 12, 227 (2006).
[CrossRef]

Sun, T.

Tian, Y.

Turner, T.

Wang, A. B.

Y. Z. Zhu and A. B. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
[CrossRef]

Wang, C.

Wang, D. N.

Wang, Q.

Wang, W. H.

Wang, X. W.

Wang, Y.

Wu, N.

Xiao, L.

Xu, L.

Yang, K.

Yu, M.

Zeng, X.

Y. Rao, X. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, and I. Bennion, Chin. Phys. Lett. 18, 643 (2001).
[CrossRef]

Zhang, L.

Y. Rao, X. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, and I. Bennion, Chin. Phys. Lett. 18, 643 (2001).
[CrossRef]

Zhong, X.

Zhou, J.

Zhu, T.

Y. Rao, X. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, and I. Bennion, Chin. Phys. Lett. 18, 643 (2001).
[CrossRef]

Zhu, Y.

Y. Rao, X. Zeng, Y. Zhu, Y. Wang, T. Zhu, Z. Ran, L. Zhang, and I. Bennion, Chin. Phys. Lett. 18, 643 (2001).
[CrossRef]

Zhu, Y. Z.

Y. Z. Zhu and A. B. Wang, IEEE Photon. Technol. Lett. 17, 447 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of the fabrication process of all-silica fiber-tip FPI sensor using electrical arc discharge assisted with oil coating in advance.

Fig. 2.
Fig. 2.

Schematic diagram of the fiber-tip FPI.

Fig. 3.
Fig. 3.

Reflection spectra and optical microscope images of the fiber-tip FPI pressure sensor at different states of the diaphragm thinning process.

Fig. 4.
Fig. 4.

(a) SEM image of the cut plane of the air bubble. (b) Enlarged partial view of the silica diaphragm at the top end of the bubble.

Fig. 5.
Fig. 5.

Experimental setup for gas pressure measurement.

Fig. 6.
Fig. 6.

(a) Reflection spectrum of the third sample, i.e., S3, at standard atmospheric pressure and room temperature. (b) Reflection spectral evolution of the sample S3 with pressure ranging from 0 to 2.0 MPa.

Fig. 7.
Fig. 7.

Wavelength shift of the interference dip at 1550nm for the three sensor samples with the gas pressure applied.

Fig. 8.
Fig. 8.

(a) Simulation model of the diaphragm deformation with increasing pressure. Young’s modulus of silica is 73 GPa; Poisson’s ratio is 0.17; silica density is 2700kg/m3. (b) Simulated relationship between the value of the diaphragm deformation and the applied pressure.

Fig. 9.
Fig. 9.

Linear relationship between the wavelength shift of the interference dip at 1550nm for sample S3 and ambient temperature. Inset: reflection spectra of sample S3 at 20°C and 100°C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I=|E|2=|E1E2exp(4πλnaird)+E3exp[4πλ(nsilicat+naird)]|2=E12+E22+E322E1E2cos(4πλnaird)2E2E3cos(4πλnsilicat)+2E1E3cos[4πλ(nsilicat+naird)]E12+E22+E322(E1E2E1E3)cos(4πλnaird)2E2E3cos(4πλnsilicat)(ift0),
ΔλΔP=(1ν)λR22Edt,

Metrics