Abstract

We present an ultrahigh-resolution, high-speed spectral domain optical coherence phase microscopy (SD-OCPM) system that combines submicrometer transverse spatial resolution and subnanometer optical path length sensitivity, with an acquisition speed of over 217,000voxels/s. The proposed SD-OCPM system overcomes two significant drawbacks of traditional common-path interferometers—limited transverse spatial resolution and suboptimal detection sensitivity—while maintaining phase stability that is comparable with common-path interferometer setups. The transverse and axial spatial resolution of the setup is measured to be 0.6 and 1.9 μm, respectively, with a phase sensitivity of 0.0027 rad (corresponds to optical path length sensitivity of 110 pm). High-speed acquisition allows for phase-sensitive 4D imaging of biological samples with subcellular resolution.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Rylander, D. P. Davé, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, Opt. Lett. 29, 1509 (2004).
    [CrossRef]
  2. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, Opt. Lett. 30, 1162 (2005).
    [CrossRef]
  3. C. Joo, E. Özkumurc, M. S. Ünlüc, and J. F. de Boer, Biosens. Bioelectron. 25, 275 (2009).
    [CrossRef]
  4. T. Akkin, D. P. Dav, T. E. Milner, and H. G. Rylander, Opt. Express 12, 2377 (2004).
    [CrossRef]
  5. A. K. Ellerbee, T. L. Creazzo, and J. A. Izatt, Opt. Express 15, 8115 (2007).
    [CrossRef]
  6. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, Opt. Lett. 30, 2131 (2005).
    [CrossRef]
  7. M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, J. Biomed. Opt. 11, 024014 (2006).
    [CrossRef]
  8. S. M. Motaghian Nezam, C. Joo, G. J. Tearney, and J. F. de Boer, Opt. Express 16, 17186 (2008).
    [CrossRef]
  9. A. St. Quintin, L.-K. Merhi, and M. V. Sarunic, Appl. Opt. 50, 1798 (2011).
    [CrossRef]
  10. I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shakeda, J. Biomed. Opt. 17, 101509 (2012).
    [CrossRef]
  11. P. O. Bagnaninchi, C. Holmes, and M. Tabrizian, Proc. SPIE 8580, 85800E (2013).
    [CrossRef]
  12. F. Helderman, B. Haslam, J. F. de Boer, and M. de Groot, Opt. Lett. 38, 431 (2013).
    [CrossRef]
  13. S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, Opt. Express 13, 410 (2005).
    [CrossRef]
  14. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, Opt. Express 13, 3931 (2005).
    [CrossRef]
  15. V. A. Maltsev, A. M. Wobus, J. Rohwedel, M. Bader, and J. Hescheler, Circ. Res. 75, 233 (1994).
    [CrossRef]

2013

P. O. Bagnaninchi, C. Holmes, and M. Tabrizian, Proc. SPIE 8580, 85800E (2013).
[CrossRef]

F. Helderman, B. Haslam, J. F. de Boer, and M. de Groot, Opt. Lett. 38, 431 (2013).
[CrossRef]

2012

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shakeda, J. Biomed. Opt. 17, 101509 (2012).
[CrossRef]

2011

2009

C. Joo, E. Özkumurc, M. S. Ünlüc, and J. F. de Boer, Biosens. Bioelectron. 25, 275 (2009).
[CrossRef]

2008

2007

2006

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, J. Biomed. Opt. 11, 024014 (2006).
[CrossRef]

2005

2004

1994

V. A. Maltsev, A. M. Wobus, J. Rohwedel, M. Bader, and J. Hescheler, Circ. Res. 75, 233 (1994).
[CrossRef]

Akkin, T.

Bader, M.

V. A. Maltsev, A. M. Wobus, J. Rohwedel, M. Bader, and J. Hescheler, Circ. Res. 75, 233 (1994).
[CrossRef]

Bagnaninchi, P. O.

P. O. Bagnaninchi, C. Holmes, and M. Tabrizian, Proc. SPIE 8580, 85800E (2013).
[CrossRef]

Barbul, A.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shakeda, J. Biomed. Opt. 17, 101509 (2012).
[CrossRef]

Bouma, B. E.

Cense, B.

Choma, M. A.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, J. Biomed. Opt. 11, 024014 (2006).
[CrossRef]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, Opt. Lett. 30, 1162 (2005).
[CrossRef]

Creazzo, T. L.

Dav, D. P.

Davé, D. P.

de Boer, J. F.

de Groot, M.

Diller, K. R.

Ellerbee, A. K.

Girshovitz, P.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shakeda, J. Biomed. Opt. 17, 101509 (2012).
[CrossRef]

Haslam, B.

Helderman, F.

Hescheler, J.

V. A. Maltsev, A. M. Wobus, J. Rohwedel, M. Bader, and J. Hescheler, Circ. Res. 75, 233 (1994).
[CrossRef]

Holmes, C.

P. O. Bagnaninchi, C. Holmes, and M. Tabrizian, Proc. SPIE 8580, 85800E (2013).
[CrossRef]

Izatt, J. A.

Joo, C.

Korenstein, R.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shakeda, J. Biomed. Opt. 17, 101509 (2012).
[CrossRef]

Maltsev, V. A.

V. A. Maltsev, A. M. Wobus, J. Rohwedel, M. Bader, and J. Hescheler, Circ. Res. 75, 233 (1994).
[CrossRef]

Merhi, L.-K.

Milner, T. E.

Motaghian Nezam, S. M.

Mujat, M.

Nevo, U.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shakeda, J. Biomed. Opt. 17, 101509 (2012).
[CrossRef]

Özkumurc, E.

C. Joo, E. Özkumurc, M. S. Ünlüc, and J. F. de Boer, Biosens. Bioelectron. 25, 275 (2009).
[CrossRef]

Park, B. H.

Pierce, M. C.

Quintin, A. St.

Rohwedel, J.

V. A. Maltsev, A. M. Wobus, J. Rohwedel, M. Bader, and J. Hescheler, Circ. Res. 75, 233 (1994).
[CrossRef]

Rylander, C. G.

Rylander, H. G.

Sarunic, M. V.

Shakeda, N. T.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shakeda, J. Biomed. Opt. 17, 101509 (2012).
[CrossRef]

Shock, I.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shakeda, J. Biomed. Opt. 17, 101509 (2012).
[CrossRef]

Tabrizian, M.

P. O. Bagnaninchi, C. Holmes, and M. Tabrizian, Proc. SPIE 8580, 85800E (2013).
[CrossRef]

Tearney, G. J.

Ünlüc, M. S.

C. Joo, E. Özkumurc, M. S. Ünlüc, and J. F. de Boer, Biosens. Bioelectron. 25, 275 (2009).
[CrossRef]

Welch, A. J.

Wobus, A. M.

V. A. Maltsev, A. M. Wobus, J. Rohwedel, M. Bader, and J. Hescheler, Circ. Res. 75, 233 (1994).
[CrossRef]

Yang, C.

Yazdanfar, S.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, J. Biomed. Opt. 11, 024014 (2006).
[CrossRef]

S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, Opt. Express 13, 410 (2005).
[CrossRef]

Yun, S. H.

Appl. Opt.

Biosens. Bioelectron.

C. Joo, E. Özkumurc, M. S. Ünlüc, and J. F. de Boer, Biosens. Bioelectron. 25, 275 (2009).
[CrossRef]

Circ. Res.

V. A. Maltsev, A. M. Wobus, J. Rohwedel, M. Bader, and J. Hescheler, Circ. Res. 75, 233 (1994).
[CrossRef]

J. Biomed. Opt.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shakeda, J. Biomed. Opt. 17, 101509 (2012).
[CrossRef]

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, J. Biomed. Opt. 11, 024014 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

P. O. Bagnaninchi, C. Holmes, and M. Tabrizian, Proc. SPIE 8580, 85800E (2013).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (1291 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic overview of the integrated widefield microscope and spectral domain OCPM system.

Fig. 2.
Fig. 2.

Three-dimensional profile of an Air Force resolution target with groups 8 and 9 line pairs clearly visible. Color bar represents the height of the metal deposit in nanometers.

Fig. 3.
Fig. 3.

Images of spontaneously beating cardiomyocyte cells. (a) En face image; (b) time lapse images of a 40μm×40μm area, color coded with axial displacement resulting from spontaneous contraction (Media 1). (c) Axial displacement profile of cell membrane on location marked by an arrow in image (a).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ=2k0(nΔl),
δϕsens1SNR.
z=ϕ4nπλo,

Metrics