Abstract

In this work, an optimum plane selection methodology is reported that can be applied to a wide range of single-beam phase retrieval techniques, based on the contrast transfer function. It is shown that the optimum measurement distances obtained by this method form a geometric series that maximizes the range of spatial frequencies to be recovered using a minimum number of planes. This allows a noise-robust phase reconstruction that does not rely on regularization techniques, i.e., an extensive search for a regularization parameter is avoided. Measurement systems that employ this optimization criteria give an instant deterministic noise-robust phase reconstruction with higher accuracy, and enable the phase retrieval of the entire object spectrum, including lower frequency components.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription