Abstract

Self-pulsating sources based on cascaded regeneration by self-phase modulation and offset filtering are investigated experimentally using large filter bandwidths of 3.5 nm and up to semi-infinite bandwidths. In accordance with numerical results reported previously, such sources self-start from amplified spontaneous emission, and picosecond pulses are sustained in a nonlinear cavity. We provide numerical and experimental results indicating the generation of 2 ps pulses and observe 0.4 ps pulses after dispersion compensation and amplification. We also demonstrate that a pair of low- and high-pass filters spawn pulses whose bandwidths are determined by the combination of the filters and gain profiles, hence simplifying the experimental setup for short pulse generation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Ippen, H. A. Haus, and L. Y. Liu, J. Opt. Soc. Am. B 6, 1736 (1989).
    [CrossRef]
  2. Y. Silberberg, P. W. Smith, D. J. Eilenberger, D. A. B. Miller, A. C. Gossard, and W. Wiegmann, Opt. Lett. 9, 507 (1984).
    [CrossRef]
  3. D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef]
  4. M. Rochette, L. R. Chen, K. Sun, and J. Hernandez-Cordero, IEEE Photon. Technol. Lett. 20, 1497 (2008).
    [CrossRef]
  5. K. Sun, M. Rochette, and L. R. Chen, Opt. Express 17, 10419 (2009).
    [CrossRef]
  6. P. Mamyshev, in 24th European Conference on Optical Communication (IEEE, 1998), Vol. 1, pp. 475–476.
  7. S. Pitois, C. Finot, L. Provost, and D. Richardson, J. Opt. Soc. Am. B 25, 1537 (2008).
    [CrossRef]
  8. T. North and M. Rochette, J. Lightwave Technol. 31, 3700 (2013).
    [CrossRef]
  9. J. Hult, J. Lightwave Technol. 25, 3770 (2007).
    [CrossRef]
  10. A. Heidt, J. Lightwave Technol. 27, 3984 (2009).
    [CrossRef]
  11. S. Ghafoor and P. Petropoulos, in 2010 2nd International Conference on Computer Technology and Development (ICCTD), Cairo, Egypt , 2010, pp. 144–148.

2013

2009

2008

S. Pitois, C. Finot, L. Provost, and D. Richardson, J. Opt. Soc. Am. B 25, 1537 (2008).
[CrossRef]

M. Rochette, L. R. Chen, K. Sun, and J. Hernandez-Cordero, IEEE Photon. Technol. Lett. 20, 1497 (2008).
[CrossRef]

2007

1991

1989

1984

Chen, L. R.

K. Sun, M. Rochette, and L. R. Chen, Opt. Express 17, 10419 (2009).
[CrossRef]

M. Rochette, L. R. Chen, K. Sun, and J. Hernandez-Cordero, IEEE Photon. Technol. Lett. 20, 1497 (2008).
[CrossRef]

Eilenberger, D. J.

Finot, C.

Ghafoor, S.

S. Ghafoor and P. Petropoulos, in 2010 2nd International Conference on Computer Technology and Development (ICCTD), Cairo, Egypt , 2010, pp. 144–148.

Gossard, A. C.

Haus, H. A.

Heidt, A.

Hernandez-Cordero, J.

M. Rochette, L. R. Chen, K. Sun, and J. Hernandez-Cordero, IEEE Photon. Technol. Lett. 20, 1497 (2008).
[CrossRef]

Hult, J.

Ippen, E. P.

Kean, P. N.

Liu, L. Y.

Mamyshev, P.

P. Mamyshev, in 24th European Conference on Optical Communication (IEEE, 1998), Vol. 1, pp. 475–476.

Miller, D. A. B.

North, T.

Petropoulos, P.

S. Ghafoor and P. Petropoulos, in 2010 2nd International Conference on Computer Technology and Development (ICCTD), Cairo, Egypt , 2010, pp. 144–148.

Pitois, S.

Provost, L.

Richardson, D.

Rochette, M.

Sibbett, W.

Silberberg, Y.

Smith, P. W.

Spence, D. E.

Sun, K.

K. Sun, M. Rochette, and L. R. Chen, Opt. Express 17, 10419 (2009).
[CrossRef]

M. Rochette, L. R. Chen, K. Sun, and J. Hernandez-Cordero, IEEE Photon. Technol. Lett. 20, 1497 (2008).
[CrossRef]

Wiegmann, W.

IEEE Photon. Technol. Lett.

M. Rochette, L. R. Chen, K. Sun, and J. Hernandez-Cordero, IEEE Photon. Technol. Lett. 20, 1497 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

P. Mamyshev, in 24th European Conference on Optical Communication (IEEE, 1998), Vol. 1, pp. 475–476.

S. Ghafoor and P. Petropoulos, in 2010 2nd International Conference on Computer Technology and Development (ICCTD), Cairo, Egypt , 2010, pp. 144–148.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Experimental setup of the self-pulsating source. Insets: spectral overview of the source operation, including spectral broadening by SPM and offset filtering at wavelengths λ1 and λ2. (b) Profiles of the BPFs. BPF, bandpass filter; HNLF, highly nonlinear fiber; EDFA, erbium-doped fiber amplifier; PSD, power spectral density; Ci, circulators; Oi, output tap couplers.

Fig. 2.
Fig. 2.

Pulses observed at O4 (top row) and C1 (bottom row) via a FROG. (a) Measured and simulated pulse autocorrelation, (b) FROG-recovered pulse and simulated pulse, (c) autocorrelation of the pulse compressed with additional SMF, and (d) pulses of (c) as retrieved by the FROG.

Fig. 3.
Fig. 3.

Comparison of the output spectra originating from this work and previous work by Sun et al. [5]. In [5] (solid line), the filter bandwidth was 0.9 nm, and the filter offset was 2.6 nm. In this work, the filter bandwidth is 3.5 nm. In (a) the filter offset is 4.2 nm, and in (b) the filter offset is 5 nm. The reference level of each line was adjusted for visibility.

Fig. 4.
Fig. 4.

Number of pulses as a function of the cavity average power observed at O4.

Fig. 5.
Fig. 5.

(a) Experimental spectra before and after bandpass filtering, (b) simulated pulse before and after filtering at BPF2, (c) simulated pulse before and after filtering at BPF1, and (d) pulse of (c) compressed by dispersion compensation.

Fig. 6.
Fig. 6.

Domains of self-pulsation (SP) and pulse-buffering (PB) as a function of the filter offset, at output O4. FO, 3 dB filter offset.

Metrics