Abstract

We experimentally investigate the stability of dispersion-managed mode-locked fiber lasers using carbon-nanotube-based saturable absorbers (SAs) with different modulation depths. An unstable operation region of the mode-locked fiber laser with near-zero net cavity dispersion is observed, where the laser produces random pulse burst rather than stable pulse train. Through the implementation of high-contrast SAs in the laser, the unstable region is found to be shrunk by 31.3% when the modulation depth of the SAs increases from 6.4% to 12.5%. The numerical simulation is consistent with the experimental observation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann and I. Hartl, IEEE J. Sel. Top. Quantum Electron. 15, 191 (2009).
    [CrossRef]
  2. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
    [CrossRef]
  3. D. Y. Tang and L. M. Zhao, Opt. Lett. 32, 41 (2007).
    [CrossRef]
  4. F. Ö. Ilday, F. W. Wise, and T. Sosnowski, Opt. Lett. 27, 1531 (2002).
    [CrossRef]
  5. D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, Opt. Lett. 35, 2858 (2010).
    [CrossRef]
  6. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, Opt. Lett. 36, 1578 (2011).
    [CrossRef]
  7. Y. Song, K. Jung, and J. Kim, Opt. Lett. 36, 1761 (2011).
    [CrossRef]
  8. Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, Opt. Express 19, 14518 (2011).
    [CrossRef]
  9. K. Kieu and F. W. Wise, in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CML3.
  10. F. X. Kärtner, J. A. der Au, and U. Keller, IEEE J. Quantum Electron. 4, 159 (1998).
    [CrossRef]
  11. S. Chouli, J. M. Soto-Crespo, and P. Grelu, Opt. Express 19, 2959 (2011).
    [CrossRef]
  12. N. Nishizawa, Y. Nozaki, E. Itoga, H. Kataura, and Y. Sakakibara, Opt. Express 19, 21874 (2011).
    [CrossRef]
  13. Y. Nozaki, N. Nishizawa, E. Omoda, H. Kataura, and Y. Sakakibara, Opt. Lett. 37, 5079 (2012).
    [CrossRef]
  14. R. Herda and O. G. Okhotnikov, IEEE J. Quantum Electron. 40, 893 (2004).
    [CrossRef]
  15. S. Yamashita, J. Lightwave Technol. 30, 427 (2012).
    [CrossRef]
  16. J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. A. Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, Opt. Express 17, 14115 (2009).
    [CrossRef]
  17. M. Zhang, E. J. R. Kelleher, A. S. Pozharov, E. D. Obraztsova, S. V. Popov, and J. R. Taylor, Opt. Lett. 36, 3984 (2011).
    [CrossRef]
  18. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, Appl. Phys. Lett. 101, 153107 (2012).
    [CrossRef]
  19. H. H. Liu, Y. Yang, and K. K. Chow, Opt. Express 21, 18975 (2013).
    [CrossRef]
  20. K. K. Chow, S. Yamashita, and S. Y. Set, Opt. Lett. 35, 2070 (2010).
    [CrossRef]
  21. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
    [CrossRef]
  22. P. Grelu and N. Akhmediev, Nat. Photonics 6, 84 (2012).
    [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2009).
  24. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, IEEE J. Sel. Top. Quantum Electron. 10, 137 (2004).
    [CrossRef]
  25. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, J. Opt. Soc. Am. B 16, 46 (1999).
    [CrossRef]

2013 (1)

2012 (4)

P. Grelu and N. Akhmediev, Nat. Photonics 6, 84 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

Y. Nozaki, N. Nishizawa, E. Omoda, H. Kataura, and Y. Sakakibara, Opt. Lett. 37, 5079 (2012).
[CrossRef]

S. Yamashita, J. Lightwave Technol. 30, 427 (2012).
[CrossRef]

2011 (6)

2010 (2)

2009 (2)

2007 (1)

2004 (2)

R. Herda and O. G. Okhotnikov, IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, IEEE J. Sel. Top. Quantum Electron. 10, 137 (2004).
[CrossRef]

2002 (1)

1999 (1)

1998 (1)

F. X. Kärtner, J. A. der Au, and U. Keller, IEEE J. Quantum Electron. 4, 159 (1998).
[CrossRef]

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

1995 (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2009).

Akhmediev, N.

P. Grelu and N. Akhmediev, Nat. Photonics 6, 84 (2012).
[CrossRef]

Benabid, F.

Cai, Y.

Chen, L.

Cho, W. B.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

Chouli, S.

Chow, K. K.

Correa, R. A.

Corwin, K. L.

Couny, F.

der Au, J. A.

F. X. Kärtner, J. A. der Au, and U. Keller, IEEE J. Quantum Electron. 4, 159 (1998).
[CrossRef]

Diddams, S. A.

Fermann, M. E.

M. E. Fermann and I. Hartl, IEEE J. Sel. Top. Quantum Electron. 15, 191 (2009).
[CrossRef]

Ferrari, A. C.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

Grelu, P.

Hartl, I.

M. E. Fermann and I. Hartl, IEEE J. Sel. Top. Quantum Electron. 15, 191 (2009).
[CrossRef]

Hasan, T.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

Herda, R.

R. Herda and O. G. Okhotnikov, IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

Hönninger, C.

Ilday, F. Ö.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

Itoga, E.

Jablonski, M.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, IEEE J. Sel. Top. Quantum Electron. 10, 137 (2004).
[CrossRef]

Johnson, T. A.

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

Jung, K.

Kärtner, F. X.

F. X. Kärtner, J. A. der Au, and U. Keller, IEEE J. Quantum Electron. 4, 159 (1998).
[CrossRef]

Kataura, H.

Kelleher, E. J. R.

Keller, U.

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, J. Opt. Soc. Am. B 16, 46 (1999).
[CrossRef]

F. X. Kärtner, J. A. der Au, and U. Keller, IEEE J. Quantum Electron. 4, 159 (1998).
[CrossRef]

Kieu, K.

K. Kieu and F. W. Wise, in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CML3.

Kim, C.

Kim, H.

Kim, J.

Knabe, K.

Knight, J. C.

Kobayashi, Y.

Light, P. S.

Lim, J.

Liu, H. H.

Ma, D.

Morier-Genoud, F.

Moser, M.

Neely, W.

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

Nicholson, J. W.

Nishizawa, N.

Nozaki, Y.

Nugent-Glandorf, L.

Obraztsova, E. D.

Okhotnikov, O. G.

R. Herda and O. G. Okhotnikov, IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

Omoda, E.

Paschotta, R.

Popa, D.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

Popov, S. V.

Pozharov, A. S.

Sakakibara, Y.

Set, S. Y.

K. K. Chow, S. Yamashita, and S. Y. Set, Opt. Lett. 35, 2070 (2010).
[CrossRef]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, IEEE J. Sel. Top. Quantum Electron. 10, 137 (2004).
[CrossRef]

Song, Y.

Sosnowski, T.

Soto-Crespo, J. M.

Sun, Z.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

Tanaka, Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, IEEE J. Sel. Top. Quantum Electron. 10, 137 (2004).
[CrossRef]

Tang, D. Y.

Taylor, J. R.

Tillman, K. A.

Torrisi, F.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

Wang, F.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

Wang, Y.

Washburn, B. R.

Wise, F. W.

F. Ö. Ilday, F. W. Wise, and T. Sosnowski, Opt. Lett. 27, 1531 (2002).
[CrossRef]

K. Kieu and F. W. Wise, in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CML3.

Yaguchi, H.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, IEEE J. Sel. Top. Quantum Electron. 10, 137 (2004).
[CrossRef]

Yamashita, S.

Yang, Y.

Zhang, M.

Zhang, Z.

Zhao, L. M.

Zhou, C.

Zong, W.

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, Appl. Phys. Lett. 101, 153107 (2012).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. Herda and O. G. Okhotnikov, IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

F. X. Kärtner, J. A. der Au, and U. Keller, IEEE J. Quantum Electron. 4, 159 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, IEEE J. Sel. Top. Quantum Electron. 10, 137 (2004).
[CrossRef]

M. E. Fermann and I. Hartl, IEEE J. Sel. Top. Quantum Electron. 15, 191 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

P. Grelu and N. Akhmediev, Nat. Photonics 6, 84 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (8)

Other (2)

K. Kieu and F. W. Wise, in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CML3.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of dispersion-managed mode-locked fiber laser incorporating CNT-SA. WDM coupler, wavelength division multiplexing coupler; EDF, erbium-doped fiber; PC, polarization controller; SMF, single-mode fiber.

Fig. 2.
Fig. 2.

Experimental results of the output spectra of dispersion-managed mode-locked fiber lasers with different net cavity dispersion using CNT-SAs with modulation depths of (a) 12.5% and (b) 6.4%.

Fig. 3.
Fig. 3.

Plots of output for (a) spectral bandwidth and (b) pulse width against net cavity dispersion of dispersion-managed mode-locked fiber lasers using CNT-SAs with different modulation depths.

Fig. 4.
Fig. 4.

Numerical results of output spectra of dispersion-managed mode-locked fiber lasers with net cavity dispersion of (a) 0.172ps2, (b) 0.028ps2, and (c) +0.02ps2. (e), (f) and (g) are the corresponding temporal pulses shown together with the frequency-chirps; (d) is the output spectrum of the laser with net cavity dispersion of 0.001ps2; and (h) is the evolution of the spectral bandwidth and the peak power against the number of round trips in the cavity.

Fig. 5.
Fig. 5.

(a) Plot of temporal pulse evolution against the number of round trips in the laser when net cavity dispersion is 0.001ps2. (b) Spectral bandwidth against net cavity dispersion for lasers incorporating different SAs with modulation depths of 6.4%, 12.5%, and 20%.

Tables (1)

Tables Icon

Table 1. Summary of Simulation Parametersa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A(ξ,T)ξ+i2(β(2)+ig1Ωg2)2A(ξ,T)T2=iγ|A(ξ,T)|2A(ξ,T)+g2A(ξ,T),
g=g0/(1+Pave/Psat),
T(I)=1(a0/(1+I/Isat)+ans),
βnet(2)=iLi×βi(2).

Metrics