Abstract

A novel microwave photonic phase shifter structure is presented. It is based on the conversion of the optical carrier phase shift into an RF signal phase shift via controlling the carrier wavelength of a single-sideband RF-modulated optical signal into a fiber Bragg grating. The new microwave photonic phase shifter has a simple structure and only requires a single control to shift the RF signal phase. It also has the ability to realize multiple phase shifts. Experimental results demonstrate a continuous 0°–360° phase shift with low amplitude variation of <2dB and low phase deviation of <5° over a wideband microwave range.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
    [CrossRef]
  2. Y. Dong, H. He, W. Hu, Z. Li, Q. Wang, W. Kuang, T. H. Cheng, Y. J. Wen, Y. Wang, and C. Lu, Opt. Lett. 32, 745 (2007).
    [CrossRef]
  3. H. Chen, Y. Dong, H. He, W. Hu, and L. Li, Opt. Lett. 34, 2375 (2009).
    [CrossRef]
  4. X. Xue, X. Zheng, H. Zhang, and B. Zhou, Opt. Lett. 36, 4641 (2011).
    [CrossRef]
  5. H. Shahoei and J. Yao, Opt. Express 20, 14009 (2012).
    [CrossRef]
  6. W. Xue, S. Sales, J. Capmany, and J. Mork, Opt. Express 18, 6156 (2010).
    [CrossRef]
  7. X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, IEEE Trans. Microwave Theor. Tech. 58, 3206 (2010).
  8. X. Yi, T. X. H. Huang, and R. A. Minasian, IEEE Photon. Technol. Lett. 23, 1286 (2011).
    [CrossRef]
  9. E. H. W. Chan, W. Zhang, and R. A. Minasian, J. Lightwave Technol. 30, 3672 (2012).
    [CrossRef]
  10. S. Ohshima, K. Ide, and H. Ibe, J. Lightwave Technol. 25, 1537 (2007).
    [CrossRef]
  11. Agilent 81960A compact tunable laser source data sheet (2012).
  12. R. Hernandez, A. Loayssa, and D. Benito, Opt. Eng. 43, 2418 (2004).
    [CrossRef]
  13. R. Kashyap, Fiber Bragg Gratings (Elsevier, 2010).

2012 (2)

2011 (2)

X. Xue, X. Zheng, H. Zhang, and B. Zhou, Opt. Lett. 36, 4641 (2011).
[CrossRef]

X. Yi, T. X. H. Huang, and R. A. Minasian, IEEE Photon. Technol. Lett. 23, 1286 (2011).
[CrossRef]

2010 (2)

W. Xue, S. Sales, J. Capmany, and J. Mork, Opt. Express 18, 6156 (2010).
[CrossRef]

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, IEEE Trans. Microwave Theor. Tech. 58, 3206 (2010).

2009 (1)

2007 (2)

2006 (1)

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

2004 (1)

R. Hernandez, A. Loayssa, and D. Benito, Opt. Eng. 43, 2418 (2004).
[CrossRef]

Benito, D.

R. Hernandez, A. Loayssa, and D. Benito, Opt. Eng. 43, 2418 (2004).
[CrossRef]

Capmany, J.

Chan, E. H. W.

Chen, H.

Cheng, T. H.

Dong, Y.

Fu, S.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, IEEE Trans. Microwave Theor. Tech. 58, 3206 (2010).

He, H.

Hernandez, R.

R. Hernandez, A. Loayssa, and D. Benito, Opt. Eng. 43, 2418 (2004).
[CrossRef]

Hong, X.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, IEEE Trans. Microwave Theor. Tech. 58, 3206 (2010).

Hu, W.

Huang, T. X. H.

X. Yi, T. X. H. Huang, and R. A. Minasian, IEEE Photon. Technol. Lett. 23, 1286 (2011).
[CrossRef]

Ibe, H.

Ide, K.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Elsevier, 2010).

Kuang, W.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

Li, L.

Li, Z.

Lin, J.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, IEEE Trans. Microwave Theor. Tech. 58, 3206 (2010).

Loayssa, A.

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

R. Hernandez, A. Loayssa, and D. Benito, Opt. Eng. 43, 2418 (2004).
[CrossRef]

Lu, C.

Minasian, R. A.

E. H. W. Chan, W. Zhang, and R. A. Minasian, J. Lightwave Technol. 30, 3672 (2012).
[CrossRef]

X. Yi, T. X. H. Huang, and R. A. Minasian, IEEE Photon. Technol. Lett. 23, 1286 (2011).
[CrossRef]

Mork, J.

Ohshima, S.

Sales, S.

Shahoei, H.

Shum, P.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, IEEE Trans. Microwave Theor. Tech. 58, 3206 (2010).

Sun, X.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, IEEE Trans. Microwave Theor. Tech. 58, 3206 (2010).

Wang, Q.

Wang, Y.

Wen, Y. J.

Wu, J.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, IEEE Trans. Microwave Theor. Tech. 58, 3206 (2010).

Xu, K.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, IEEE Trans. Microwave Theor. Tech. 58, 3206 (2010).

Xue, W.

Xue, X.

Yao, J.

Yi, X.

X. Yi, T. X. H. Huang, and R. A. Minasian, IEEE Photon. Technol. Lett. 23, 1286 (2011).
[CrossRef]

Yin, J.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, IEEE Trans. Microwave Theor. Tech. 58, 3206 (2010).

Zhang, H.

Zhang, W.

Zheng, X.

Zhou, B.

Zhou, J.

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, IEEE Trans. Microwave Theor. Tech. 58, 3206 (2010).

IEEE Photon. Technol. Lett. (2)

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

X. Yi, T. X. H. Huang, and R. A. Minasian, IEEE Photon. Technol. Lett. 23, 1286 (2011).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, IEEE Trans. Microwave Theor. Tech. 58, 3206 (2010).

J. Lightwave Technol. (2)

Opt. Eng. (1)

R. Hernandez, A. Loayssa, and D. Benito, Opt. Eng. 43, 2418 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (2)

Agilent 81960A compact tunable laser source data sheet (2012).

R. Kashyap, Fiber Bragg Gratings (Elsevier, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Topology of the new microwave photonic phase shifter.

Fig. 2.
Fig. 2.

Reflection spectrum (dash) and phase response (solid) of the fiber Bragg grating and the spectrum of the single sideband RF-modulated optical signals for two different optical carrier frequencies (f1 and f2) into the fiber Bragg grating.

Fig. 3.
Fig. 3.

Topology of the fiber Bragg grating-based microwave photonic phase shifter for realizing multiple phase shifters.

Fig. 4.
Fig. 4.

Measured reflection spectrum (dash) and phase response (solid) of the fiber Bragg grating used in the microwave photonic phase shifter experiment.

Fig. 5.
Fig. 5.

Experimental setup of the microwave photonic phase shifter.

Fig. 6.
Fig. 6.

Measured (a) amplitude and (b) phase response of the microwave photonic phase shifter obtained using laser tuning from 1549.552 to 1549.666 nm and different sets of modulator bias voltages. Set 1: V1=0.2V, V2=1.13V, and V3=1.86V (solid), and Set 2: V1=2.63V, V2=1.83V, and V3=1.86V (dash).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Eout,SSB(t)=A0exp(jωct)+A1exp[j(ωcωRF)t],
Eout,FBG(t)=A0|H(ωc)|exp[jargH(ωc)]exp(jωct)+A1|H(ωcωRF)|exp[jargH(ωcωRF)]×exp[j(ωcωRF)t].
Iout,RF(t)|A0||A1||H(ωc)||H(ωcωRF)|×cos[ωRFt+ϕ0ϕ1+argH(ωc)argH(ωcωRF)].

Metrics