Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser ablation ignition of premixed methane and oxygen-enriched air mixtures using a tantalum target

Not Accessible

Your library or personal account may give you access

Abstract

We report the laser ablation ignition of premixed methane and oxygen-enriched air mixtures using a tantalum target. The minimum laser pulse energy (MPE) of the ablation ignition was obtained as 2–4 mJ, which was reduced by one order of magnitude compared with that of the direct laser-induced gas breakdown ignition. The ignition time of the ablation ignition was investigated for the first time, to our best knowledge, by measuring the emission signal profiles due to the successfully ignited flames, and an ignition time as short as 50μs was obtained. The reduction in MPE will promote the miniaturization and, thus, the practical applications of laser ignition systems.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Successive laser ablation ignition of premixed methane/air mixtures

Moon Soo Bak and Mark A Cappelli
Opt. Express 23(11) A419-A427 (2015)

Ignition characteristics of methane/air premixed mixture by microwave-enhanced laser-induced breakdown plasma

Atsushi Nishiyama, Ahsa Moon, Yuji Ikeda, Jun Hayashi, and Fumiteru Akamatsu
Opt. Express 21(S6) A1094-A1101 (2013)

Laser induced spark ignition of coaxial methane/oxygen/nitrogen diffusion flames

Xiaohui Li, Yang Yu, Xin Yu, Chang Liu, Rongwei Fan, and Deying Chen
Opt. Express 22(3) 3447-3457 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved