Abstract

Moth-eye (ME) arrays with varying aspect ratios and profile heights were fabricated in Si using a general colloidal lithography and reactive ion etching technique. Antireflective (AR) properties of the arrays were rigorously assessed from the near to far infrared (λ=250μm) using transmission and reflection measurements via dispersive and Fourier transform infrared spectroscopy and modeled using an effective medium approximation (EMA). Infrared transmission of low aspect ratio structures (2) matched the EMA model, indicating that the most important factor for AR at higher wavelengths is structure height. High aspect ratio structures (>6) were highly transmissive (>90% of theoretical maximum) over a large bandwidth in the mid-infrared (20–50 μm). Specular reflectance, total transmission, and diffuse reflectance (DR) measurements indicate that ME structures do not reach the theoretical maximum at near-infrared wavelengths due to DR and forward scattering phenomena. Ultimately, correlating optical performance with feature geometry (pitch, profile, height, etc.) over multiple length scales allows intelligent design of ME structures for broadband applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription