Abstract

Correlation-based pointwise processing of dynamic speckle patterns is proposed for spatial characterization of activity in a sample. The result is a set of 2D activity maps of the estimates of temporal correlation, or structure functions, at increasing time lags. Pointwise computation provides spatial resolution, limited by the pixel period of the optical sensor used for acquisition of the speckle patterns. Pointwise normalization of the estimates solves the problem with the nonuniform illumination and varying reflectivity across the sample. The high contrast detailed activity maps obtained from processing of synthetic and experimental speckle patterns confirms efficiency of the proposed approach.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Rabal and R. A. Braga, eds., Dynamic Laser Speckle and Applications (CRC Press, 2009).
  2. H. Fujii, K. Nohira, Y. Yamamoto, H. Ikawa, and T. Ohura, Appl. Opt. 26, 5321 (1987).
    [CrossRef]
  3. R. Arizaga, N. Cap, H. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
    [CrossRef]
  4. A. Saúde, F. de Menezes, P. Freitas, G. Rabelo, and R. Braga, J. Opt. Soc. Am. A 29, 1648 (2012).
    [CrossRef]
  5. E. Blotta, V. Ballarin, and H. Rabal, Opt. Lett. 34, 1201 (2009).
    [CrossRef]
  6. G. Sendra, R. Arizaga, H. Rabal, and M. Trivi, Opt. Lett. 30, 1641 (2005).
    [CrossRef]
  7. L. Marti-Lopez, H. Cabrera, R. Martinez-Celorio, and R. Gonzales-Pena, Opt. Commun. 283, 4972 (2010).
    [CrossRef]
  8. X. Zhong, X. Wang, N. Cooley, P. Farrel, and B. Morgan, Opt. Commun. 305, 27 (2013).
    [CrossRef]
  9. B. Zheng, C. Pleass, and C. Ih, Appl. Opt. 33, 231 (1994).
    [CrossRef]
  10. J. A. Pomarico and H. O. DiRocco, Rev. Sci. Instrum. 75, 4727 (2004).
    [CrossRef]
  11. L. Zdunek, K. Frankevych, K. Konstankiewicz, and Z. Ranachowski, Acta Agrophysica 11, 303 (2008).
  12. E. Stoykova, B. Ivanov, M. Shopova, T. Liubenova, I. Panchev, and V. Sainov, Proc. SPIE 7747, 77470L (2011).
    [CrossRef]
  13. J. Goodman, Statistical Optics (Wiley-Interscience, 2000).
  14. E. Equis and P. Jacquot, Proc. SPIE 6341, 634138 (2006).
    [CrossRef]
  15. A. Federico, G. H. Kaufmann, G. E. Galizzi, H. Rabal, M. Trivi, and R. Arizaga, Opt. Commun. 260, 493 (2006).
    [CrossRef]

2013

X. Zhong, X. Wang, N. Cooley, P. Farrel, and B. Morgan, Opt. Commun. 305, 27 (2013).
[CrossRef]

2012

2011

E. Stoykova, B. Ivanov, M. Shopova, T. Liubenova, I. Panchev, and V. Sainov, Proc. SPIE 7747, 77470L (2011).
[CrossRef]

2010

L. Marti-Lopez, H. Cabrera, R. Martinez-Celorio, and R. Gonzales-Pena, Opt. Commun. 283, 4972 (2010).
[CrossRef]

2009

2008

L. Zdunek, K. Frankevych, K. Konstankiewicz, and Z. Ranachowski, Acta Agrophysica 11, 303 (2008).

2006

E. Equis and P. Jacquot, Proc. SPIE 6341, 634138 (2006).
[CrossRef]

A. Federico, G. H. Kaufmann, G. E. Galizzi, H. Rabal, M. Trivi, and R. Arizaga, Opt. Commun. 260, 493 (2006).
[CrossRef]

2005

2004

J. A. Pomarico and H. O. DiRocco, Rev. Sci. Instrum. 75, 4727 (2004).
[CrossRef]

2002

R. Arizaga, N. Cap, H. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
[CrossRef]

1994

1987

Arizaga, R.

A. Federico, G. H. Kaufmann, G. E. Galizzi, H. Rabal, M. Trivi, and R. Arizaga, Opt. Commun. 260, 493 (2006).
[CrossRef]

G. Sendra, R. Arizaga, H. Rabal, and M. Trivi, Opt. Lett. 30, 1641 (2005).
[CrossRef]

R. Arizaga, N. Cap, H. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
[CrossRef]

Ballarin, V.

Blotta, E.

Braga, R.

Cabrera, H.

L. Marti-Lopez, H. Cabrera, R. Martinez-Celorio, and R. Gonzales-Pena, Opt. Commun. 283, 4972 (2010).
[CrossRef]

Cap, N.

R. Arizaga, N. Cap, H. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
[CrossRef]

Cooley, N.

X. Zhong, X. Wang, N. Cooley, P. Farrel, and B. Morgan, Opt. Commun. 305, 27 (2013).
[CrossRef]

de Menezes, F.

DiRocco, H. O.

J. A. Pomarico and H. O. DiRocco, Rev. Sci. Instrum. 75, 4727 (2004).
[CrossRef]

Equis, E.

E. Equis and P. Jacquot, Proc. SPIE 6341, 634138 (2006).
[CrossRef]

Farrel, P.

X. Zhong, X. Wang, N. Cooley, P. Farrel, and B. Morgan, Opt. Commun. 305, 27 (2013).
[CrossRef]

Federico, A.

A. Federico, G. H. Kaufmann, G. E. Galizzi, H. Rabal, M. Trivi, and R. Arizaga, Opt. Commun. 260, 493 (2006).
[CrossRef]

Frankevych, K.

L. Zdunek, K. Frankevych, K. Konstankiewicz, and Z. Ranachowski, Acta Agrophysica 11, 303 (2008).

Freitas, P.

Fujii, H.

Galizzi, G. E.

A. Federico, G. H. Kaufmann, G. E. Galizzi, H. Rabal, M. Trivi, and R. Arizaga, Opt. Commun. 260, 493 (2006).
[CrossRef]

Gonzales-Pena, R.

L. Marti-Lopez, H. Cabrera, R. Martinez-Celorio, and R. Gonzales-Pena, Opt. Commun. 283, 4972 (2010).
[CrossRef]

Goodman, J.

J. Goodman, Statistical Optics (Wiley-Interscience, 2000).

Ih, C.

Ikawa, H.

Ivanov, B.

E. Stoykova, B. Ivanov, M. Shopova, T. Liubenova, I. Panchev, and V. Sainov, Proc. SPIE 7747, 77470L (2011).
[CrossRef]

Jacquot, P.

E. Equis and P. Jacquot, Proc. SPIE 6341, 634138 (2006).
[CrossRef]

Kaufmann, G. H.

A. Federico, G. H. Kaufmann, G. E. Galizzi, H. Rabal, M. Trivi, and R. Arizaga, Opt. Commun. 260, 493 (2006).
[CrossRef]

Konstankiewicz, K.

L. Zdunek, K. Frankevych, K. Konstankiewicz, and Z. Ranachowski, Acta Agrophysica 11, 303 (2008).

Liubenova, T.

E. Stoykova, B. Ivanov, M. Shopova, T. Liubenova, I. Panchev, and V. Sainov, Proc. SPIE 7747, 77470L (2011).
[CrossRef]

Marti-Lopez, L.

L. Marti-Lopez, H. Cabrera, R. Martinez-Celorio, and R. Gonzales-Pena, Opt. Commun. 283, 4972 (2010).
[CrossRef]

Martinez-Celorio, R.

L. Marti-Lopez, H. Cabrera, R. Martinez-Celorio, and R. Gonzales-Pena, Opt. Commun. 283, 4972 (2010).
[CrossRef]

Morgan, B.

X. Zhong, X. Wang, N. Cooley, P. Farrel, and B. Morgan, Opt. Commun. 305, 27 (2013).
[CrossRef]

Nohira, K.

Ohura, T.

Panchev, I.

E. Stoykova, B. Ivanov, M. Shopova, T. Liubenova, I. Panchev, and V. Sainov, Proc. SPIE 7747, 77470L (2011).
[CrossRef]

Pleass, C.

Pomarico, J. A.

J. A. Pomarico and H. O. DiRocco, Rev. Sci. Instrum. 75, 4727 (2004).
[CrossRef]

Rabal, H.

E. Blotta, V. Ballarin, and H. Rabal, Opt. Lett. 34, 1201 (2009).
[CrossRef]

A. Federico, G. H. Kaufmann, G. E. Galizzi, H. Rabal, M. Trivi, and R. Arizaga, Opt. Commun. 260, 493 (2006).
[CrossRef]

G. Sendra, R. Arizaga, H. Rabal, and M. Trivi, Opt. Lett. 30, 1641 (2005).
[CrossRef]

R. Arizaga, N. Cap, H. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
[CrossRef]

Rabelo, G.

Ranachowski, Z.

L. Zdunek, K. Frankevych, K. Konstankiewicz, and Z. Ranachowski, Acta Agrophysica 11, 303 (2008).

Sainov, V.

E. Stoykova, B. Ivanov, M. Shopova, T. Liubenova, I. Panchev, and V. Sainov, Proc. SPIE 7747, 77470L (2011).
[CrossRef]

Saúde, A.

Sendra, G.

Shopova, M.

E. Stoykova, B. Ivanov, M. Shopova, T. Liubenova, I. Panchev, and V. Sainov, Proc. SPIE 7747, 77470L (2011).
[CrossRef]

Stoykova, E.

E. Stoykova, B. Ivanov, M. Shopova, T. Liubenova, I. Panchev, and V. Sainov, Proc. SPIE 7747, 77470L (2011).
[CrossRef]

Trivi, M.

A. Federico, G. H. Kaufmann, G. E. Galizzi, H. Rabal, M. Trivi, and R. Arizaga, Opt. Commun. 260, 493 (2006).
[CrossRef]

G. Sendra, R. Arizaga, H. Rabal, and M. Trivi, Opt. Lett. 30, 1641 (2005).
[CrossRef]

R. Arizaga, N. Cap, H. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
[CrossRef]

Wang, X.

X. Zhong, X. Wang, N. Cooley, P. Farrel, and B. Morgan, Opt. Commun. 305, 27 (2013).
[CrossRef]

Yamamoto, Y.

Zdunek, L.

L. Zdunek, K. Frankevych, K. Konstankiewicz, and Z. Ranachowski, Acta Agrophysica 11, 303 (2008).

Zheng, B.

Zhong, X.

X. Zhong, X. Wang, N. Cooley, P. Farrel, and B. Morgan, Opt. Commun. 305, 27 (2013).
[CrossRef]

Acta Agrophysica

L. Zdunek, K. Frankevych, K. Konstankiewicz, and Z. Ranachowski, Acta Agrophysica 11, 303 (2008).

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Commun.

A. Federico, G. H. Kaufmann, G. E. Galizzi, H. Rabal, M. Trivi, and R. Arizaga, Opt. Commun. 260, 493 (2006).
[CrossRef]

L. Marti-Lopez, H. Cabrera, R. Martinez-Celorio, and R. Gonzales-Pena, Opt. Commun. 283, 4972 (2010).
[CrossRef]

X. Zhong, X. Wang, N. Cooley, P. Farrel, and B. Morgan, Opt. Commun. 305, 27 (2013).
[CrossRef]

Opt. Eng.

R. Arizaga, N. Cap, H. Rabal, and M. Trivi, Opt. Eng. 41, 287 (2002).
[CrossRef]

Opt. Lett.

Proc. SPIE

E. Equis and P. Jacquot, Proc. SPIE 6341, 634138 (2006).
[CrossRef]

E. Stoykova, B. Ivanov, M. Shopova, T. Liubenova, I. Panchev, and V. Sainov, Proc. SPIE 7747, 77470L (2011).
[CrossRef]

Rev. Sci. Instrum.

J. A. Pomarico and H. O. DiRocco, Rev. Sci. Instrum. 75, 4727 (2004).
[CrossRef]

Other

H. J. Rabal and R. A. Braga, eds., Dynamic Laser Speckle and Applications (CRC Press, 2009).

J. Goodman, Statistical Optics (Wiley-Interscience, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Sequence of P speckle patterns is divided into overlapping sequences of length N.

Fig. 2.
Fig. 2.

(a) Normalized temporal correlation and structure functions and mean values of their estimates; the circles show the mean value of the STF estimate normalized by the variance estimate, υ˜. (b) Histograms of the NTSF estimate as a function of the time lag.

Fig. 3.
Fig. 3.

8-bit encoded synthetic speckle patterns (top) and grayscale maps from 0 to 10,400 of the variance distribution (bottom) at (a), (c) uniform and (b), (d) Gaussian illumination.

Fig. 4.
Fig. 4.

Grayscale maps of the estimates of the (a), (d) NTCF, (b), (e) NTSF, and (c), (f) TSF at uniform (top) and Gaussian (bottom) illumination. The scale is from 0 to 1 for (a) and (d), from 0 to 2 for (b) and (e), from 0 to 16,850 for (c), and from 0 to 13,300 for (f).

Fig. 5.
Fig. 5.

Coin of 1 lev used as a test object. (a) A 2D recorded speckle pattern of the coin covered with a white paint at illumination with a He–Ne laser; (b) Grayscale map of the variance distribution from 0 to 5820 (c).

Fig. 6.
Fig. 6.

Grayscale maps of the NTCF at t1=0 (top) and t2=75s (bottom); (a), (e) τ=0.25s, (b), (f) τ=1.25s, (c), (g) τ=2.5s, and (d), (h) τ=5s. The scale is from 0.2 to 1.1.

Fig. 7.
Fig. 7.

Grayscale maps of the NTSF at t1=0 (top) and t2=75s (bottom); (a), (e) τ=0.25s; (b), (f) τ=1.25s; (c), (g) τ=2.5s; and (d), (h) τ=5s. The scale is from 0 to 2.5.

Fig. 8.
Fig. 8.

Grayscale maps of the NTCF at τ=0.75s obtained from sequences recorded at (a) t=0s, (b) t=50s, (c) t=100s, (d) t=150s, (e) t=200s, (f) t=250s, (g) t=300s, and (h) t=350s. The scale is from 0.2 to 1.1.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R^norm(k,l,m)=1(Nm+1)υ^kln=0Nm(Ikl,nI¯kl)(Ikl,n+mI¯kl),
υ^kl=1Nn=0N(Ikl,nIkl,n)2,I¯kl=1Nn=0NIkl,n,
S^norm(k,l,m)=1(Nm+1)υ^kln=0Nm(Ikl,nIkl,n+m)2.
S^(k,l,m)=1(Nm+1)n=0Nm(Ikl,nIkl,n+m)2.
Y˜(m)=1NxNyk=1Nxl=1NyY^(k,l,m),YRnorm,Snorm,S.
UCCD=FT1{H·FT(US)},

Metrics