Abstract

We designed taper-ring optical traps by a weakly focused laser beam through a circular aperture. By railing-like potential barriers, these optical traps are partitioned into enclosed rings, in which irregular light-absorbing microparticles can be driven by photophoretic force to revolve around optical axis in air. The diameter of revolution can reach about 700 μm, which is much larger than that in traditional optical traps based on radiation pressure and gradient force. More importantly, multiple particles were driven to revolve simultaneously in different planes in air for the first reported time to the best of our knowledge.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
    [CrossRef]
  3. K. T. Gahagan and G. A. Swartzlander, Opt. Lett. 21, 827 (1996).
    [CrossRef]
  4. D. G. Grier, Nature 424, 810 (2003).
    [CrossRef]
  5. K. Dholakia, P. Reece, and M. Gu, Chem. Soc. Rev. 37, 42 (2007).
    [CrossRef]
  6. M. Dienerowitz, M. Mazilu, and K. Dholakia, J. Nanophoton. 2, 021875 (2008).
    [CrossRef]
  7. L. Isenhower, W. Williams, A. Dally, and M. Saffman, Opt. Lett. 34, 1159 (2009).
    [CrossRef]
  8. R. L. Eriksen, P. J. Rodrigo, V. R. Daria, and J. Glückstad, Appl. Opt. 42, 5107 (2003).
    [CrossRef]
  9. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, Opt. Lett. 22, 52 (1997).
    [CrossRef]
  10. X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
    [CrossRef]
  11. M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
    [CrossRef]
  12. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
    [CrossRef]
  13. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, Opt. Express 17, 8201 (2009).
    [CrossRef]
  14. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
    [CrossRef]
  15. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Opt. Express 18, 3137 (2010).
    [CrossRef]
  16. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, Opt. Lett. 36, 1491 (2011).
    [CrossRef]
  17. V. G. Shvedov, C. Hnatovsky, N. Shostka, A. V. Rode, and W. Krolikowski, Opt. Lett. 37, 1934 (2012).
    [CrossRef]
  18. F. Ehrenhaft, Phys. Z. 18, 352 (1917).
  19. M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
    [CrossRef]
  20. G. Wurm, J. Teiser, and D. Reiss, Geophys. Res. Lett. 35, L10201 (2008).
    [CrossRef]
  21. J. B. Wills, K. J. Knox, and J. P. Reid, Chem. Phys. Lett. 481, 153 (2009).
    [CrossRef]

2012 (1)

2011 (2)

2010 (3)

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Opt. Express 18, 3137 (2010).
[CrossRef]

2009 (3)

2008 (2)

G. Wurm, J. Teiser, and D. Reiss, Geophys. Res. Lett. 35, L10201 (2008).
[CrossRef]

M. Dienerowitz, M. Mazilu, and K. Dholakia, J. Nanophoton. 2, 021875 (2008).
[CrossRef]

2007 (1)

K. Dholakia, P. Reece, and M. Gu, Chem. Soc. Rev. 37, 42 (2007).
[CrossRef]

2003 (2)

2002 (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

1997 (1)

1996 (1)

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
[CrossRef]

1986 (1)

1982 (1)

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

1917 (1)

F. Ehrenhaft, Phys. Z. 18, 352 (1917).

Allen, L.

Arnold, S.

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Ashkin, A.

Bjorkholm, J. E.

Bowman, R.

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

Chen, J.

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

Chen, Z.

Christodoulides, D. N.

Chu, S.

Dally, A.

Daria, V. R.

Desyatnikov, A. S.

Dholakia, K.

M. Dienerowitz, M. Mazilu, and K. Dholakia, J. Nanophoton. 2, 021875 (2008).
[CrossRef]

K. Dholakia, P. Reece, and M. Gu, Chem. Soc. Rev. 37, 42 (2007).
[CrossRef]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, Opt. Lett. 22, 52 (1997).
[CrossRef]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, J. Nanophoton. 2, 021875 (2008).
[CrossRef]

Ding, J.

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

Dziedzic, J. M.

Ehrenhaft, F.

F. Ehrenhaft, Phys. Z. 18, 352 (1917).

Eriksen, R. L.

Gahagan, K. T.

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

Glückstad, J.

Grier, D. G.

D. G. Grier, Nature 424, 810 (2003).
[CrossRef]

Gu, M.

K. Dholakia, P. Reece, and M. Gu, Chem. Soc. Rev. 37, 42 (2007).
[CrossRef]

Guo, C.-S.

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

Hernandez, D.

Hnatovsky, C.

Huang, S.

Isenhower, L.

Izdebskaya, Y. V.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Opt. Express 18, 3137 (2010).
[CrossRef]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

Kivshar, Y. S.

Knox, K. J.

J. B. Wills, K. J. Knox, and J. P. Reid, Chem. Phys. Lett. 481, 153 (2009).
[CrossRef]

Krolikowski, W.

Lewittes, M.

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Li, Y.

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, J. Nanophoton. 2, 021875 (2008).
[CrossRef]

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

Oster, G.

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Padgett, M.

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

Padgett, M. J.

Prakash, J.

Reece, P.

K. Dholakia, P. Reece, and M. Gu, Chem. Soc. Rev. 37, 42 (2007).
[CrossRef]

Reid, J. P.

J. B. Wills, K. J. Knox, and J. P. Reid, Chem. Phys. Lett. 481, 153 (2009).
[CrossRef]

Reiss, D.

G. Wurm, J. Teiser, and D. Reiss, Geophys. Res. Lett. 35, L10201 (2008).
[CrossRef]

Rode, A. V.

Rodrigo, P. J.

Saffman, M.

Salazar, M.

Shostka, N.

Shvedov, V. G.

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

Simpson, N. B.

Swartzlander, G. A.

Teiser, J.

G. Wurm, J. Teiser, and D. Reiss, Geophys. Res. Lett. 35, L10201 (2008).
[CrossRef]

Wang, H.-T.

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

Wang, X.-L.

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

Williams, W.

Wills, J. B.

J. B. Wills, K. J. Knox, and J. P. Reid, Chem. Phys. Lett. 481, 153 (2009).
[CrossRef]

Wurm, G.

G. Wurm, J. Teiser, and D. Reiss, Geophys. Res. Lett. 35, L10201 (2008).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
[CrossRef]

Zhang, P.

Zhang, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Lewittes, S. Arnold, and G. Oster, Appl. Phys. Lett. 40, 455 (1982).
[CrossRef]

Chem. Phys. Lett. (1)

J. B. Wills, K. J. Knox, and J. P. Reid, Chem. Phys. Lett. 481, 153 (2009).
[CrossRef]

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, Chem. Soc. Rev. 37, 42 (2007).
[CrossRef]

Geophys. Res. Lett. (1)

G. Wurm, J. Teiser, and D. Reiss, Geophys. Res. Lett. 35, L10201 (2008).
[CrossRef]

J. Nanophoton. (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, J. Nanophoton. 2, 021875 (2008).
[CrossRef]

Nat. Photonics (1)

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

Nature (3)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef]

A. Ashkin, J. M. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
[CrossRef]

D. G. Grier, Nature 424, 810 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. Lett. (2)

X.-L. Wang, J. Chen, Y. Li, J. Ding, C.-S. Guo, and H.-T. Wang, Phys. Rev. Lett. 105, 253602 (2010).
[CrossRef]

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Phys. Rev. Lett. 105, 118103 (2010).
[CrossRef]

Phys. Z. (1)

F. Ehrenhaft, Phys. Z. 18, 352 (1917).

Supplementary Material (3)

» Media 1: MPG (874 KB)     
» Media 2: MPG (2826 KB)     
» Media 3: MPG (1524 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Principle schematic of the experimental devices. L1, L2, lenses to expand the laser beam; C, the circular aperture; L3, lens to make the diffracted beam weakly focused. The red ellipse denotes the optical trapping field (a range of 0–10 mm in front of the focus of lens L3) that can trap particles and make particles revolve. The center of aperture C is defined as the origin of the coordinate system. (b) Simulated 2D light intensity distribution in the y-z plane (x=0mm). (c) Simulated 3D axisymmetric light intensity distribution of the optical field surrounded by the black square frame in Fig. 1(b). (d) Simulated 2D light intensity distribution of the transverse section in the x-y plane (z=47.9mm) located near the red line in Fig. 1(b). The inset in Fig. 1(d) shows the simulated radial intensity curve of the transverse section. (e) Measured transverse light intensity distribution in the same plane (z=47.9mm) in the experiment. The inset in Fig. 1(e) shows the experimental radial intensity curve.

Fig. 2.
Fig. 2.

(a) Sketch map denoting that a triangular prism particle revolves in a dark ring. Beam propagation is perpendicular to the paper. S1 and S2 are the inclined faces of the particle. (b) Sketch map of the qualitative analysis about the forces acting upon the particle. Z denotes the optical axial direction, and T is the tangential direction of revolving around the optical axis. S3 is the bottom surface of the particle. Sh is the face perpendicular to paper and the face S3. α is the angle between face S1 and bottom surface S3. β is the angle between face S2 and bottom surface S3. F1 and F2 are the photophoretic forces acting separately perpendicularly on faces S1 and S2. F3 is the photophoretic force generated by the potential barrier behind the particle.

Fig. 3.
Fig. 3.

(a), (b) Revolution trajectory of a particle (see Media 1). Figure 3(a) shows the revolution trajectory observed along the x axis, while Fig. 3(b) shows the trajectory of the same particle observed from the direction, which has an intersection angle of 30° with optical axis. The inset in Fig. 3(a) shows the microstructure of toner particles under scanning electron microscope. (c) Frequency changing of the particle with periodic changing of laser power. (d) Relationship curve (blue curve) of the revolution frequency and laser power. The black dotted line was fitted by the least square method.

Fig. 4.
Fig. 4.

Movement of particles revolving simultaneously by moving lens L3 along the x axis (perpendicular to the optical axis) (Media 2). (a)–(c) Vertical views of the movement observed from the y direction by MO2 and CCD2. What these ellipses (solid white line) enclose are revolving particles. (d)–(f) Horizontal views of the movement observed from the x direction by MO1 and CCD1.

Fig. 5.
Fig. 5.

Trajectories of two particles with different revolution diameters in different planes. The figure shows 37 frames excerpts from Media 3 observed from the direction that has an intersection angle of 30° with the optical axis. The left particle further to the focus of Lens L3 revolves with a diameter of 700 μm and the right one near the focus revolves with a diameter of about 220 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

u(ri,z)=2πAexp(jkz)jλzexp(jk2zri2)0Rexp[jkr22(1z1f)]J0(2πrriλz)rdr,
FT=F1sinαF2sinβISh(cosαcosβ).

Metrics