Abstract

Ring microcavities were formed by wrapping ZnS microbelts, which act as the waveguide and gain region of the microcavities on the surface of optical fibers. The ring microcavities with the formation of whispering gallery modes have lasing threshold lower (Q-factor higher) than that of the ZnS microbelts. The excitation of TM modes could also be suppressed by the ring geometries of ZnS microbelts. Furthermore, directional single-mode lasing was realized from a coupled asymmetric ring microcavity. The Vernier coupling effect and deformed geometry of the asymmetric ring microcavity were contributed to the stable single-mode operation and directional emission, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. S. Li, M. Afzelius, J. Zetterberg, and M. Aldén, Rev. Sci. Instrum. 75, 3208 (2004).
    [CrossRef]
  2. L. Shang, L. Y. Liu, and L. Xu, Opt. Lett. 33, 1150 (2008).
    [CrossRef]
  3. G. Griffel, IEEE Photon. Technol. Lett. 12, 1642 (2000).
    [CrossRef]
  4. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, Nano Lett. 11, 1122 (2011).
    [CrossRef]
  5. M. W. Kim, C. H. Yi, S. H. Rim, C. M. Kim, J. H. Kim, and K. R. Oh, Opt. Express 13, 13651 (2012).
    [CrossRef]
  6. K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, IEEE Photon. Technol. Lett. 16, 828 (2004).
    [CrossRef]
  7. J. Valenta, D. Guennani, A. Manar, and B. Htjnerlage, Solid State Commun. 98, 6951996.
    [CrossRef]
  8. Y. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, Chem. Phys. Lett. 357, 314 (2002).
    [CrossRef]
  9. http://wwwhome.math.utwente.nl/~hammer/oms.html .
  10. C. Goyal, R. L. Gallawa, and A. K. Ghatak, J. Lightwave Technol. 8, 768 (1990).
    [CrossRef]
  11. H. G. L. Schwefel, H. E. Türeci, A. D. Stone, and R. K. Chang, Optical Processes in Microcavities (World Scientific, 2003).

2012

M. W. Kim, C. H. Yi, S. H. Rim, C. M. Kim, J. H. Kim, and K. R. Oh, Opt. Express 13, 13651 (2012).
[CrossRef]

2011

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, Nano Lett. 11, 1122 (2011).
[CrossRef]

2008

2004

Z. S. Li, M. Afzelius, J. Zetterberg, and M. Aldén, Rev. Sci. Instrum. 75, 3208 (2004).
[CrossRef]

K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, IEEE Photon. Technol. Lett. 16, 828 (2004).
[CrossRef]

2002

Y. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, Chem. Phys. Lett. 357, 314 (2002).
[CrossRef]

2000

G. Griffel, IEEE Photon. Technol. Lett. 12, 1642 (2000).
[CrossRef]

1996

J. Valenta, D. Guennani, A. Manar, and B. Htjnerlage, Solid State Commun. 98, 6951996.
[CrossRef]

1990

C. Goyal, R. L. Gallawa, and A. K. Ghatak, J. Lightwave Technol. 8, 768 (1990).
[CrossRef]

Afzelius, M.

Z. S. Li, M. Afzelius, J. Zetterberg, and M. Aldén, Rev. Sci. Instrum. 75, 3208 (2004).
[CrossRef]

Aldén, M.

Z. S. Li, M. Afzelius, J. Zetterberg, and M. Aldén, Rev. Sci. Instrum. 75, 3208 (2004).
[CrossRef]

Chang, R. K.

H. G. L. Schwefel, H. E. Türeci, A. D. Stone, and R. K. Chang, Optical Processes in Microcavities (World Scientific, 2003).

Choi, S. J.

K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, IEEE Photon. Technol. Lett. 16, 828 (2004).
[CrossRef]

Connolly, J.

K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, IEEE Photon. Technol. Lett. 16, 828 (2004).
[CrossRef]

Dai, L.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, Nano Lett. 11, 1122 (2011).
[CrossRef]

Dapkus, P. D.

K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, IEEE Photon. Technol. Lett. 16, 828 (2004).
[CrossRef]

Djordjev, K.

K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, IEEE Photon. Technol. Lett. 16, 828 (2004).
[CrossRef]

Gallawa, R. L.

C. Goyal, R. L. Gallawa, and A. K. Ghatak, J. Lightwave Technol. 8, 768 (1990).
[CrossRef]

Ghatak, A. K.

C. Goyal, R. L. Gallawa, and A. K. Ghatak, J. Lightwave Technol. 8, 768 (1990).
[CrossRef]

Goyal, C.

C. Goyal, R. L. Gallawa, and A. K. Ghatak, J. Lightwave Technol. 8, 768 (1990).
[CrossRef]

Griffel, G.

K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, IEEE Photon. Technol. Lett. 16, 828 (2004).
[CrossRef]

G. Griffel, IEEE Photon. Technol. Lett. 12, 1642 (2000).
[CrossRef]

Gu, F. X.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, Nano Lett. 11, 1122 (2011).
[CrossRef]

Guennani, D.

J. Valenta, D. Guennani, A. Manar, and B. Htjnerlage, Solid State Commun. 98, 6951996.
[CrossRef]

Htjnerlage, B.

J. Valenta, D. Guennani, A. Manar, and B. Htjnerlage, Solid State Commun. 98, 6951996.
[CrossRef]

Kim, C. M.

M. W. Kim, C. H. Yi, S. H. Rim, C. M. Kim, J. H. Kim, and K. R. Oh, Opt. Express 13, 13651 (2012).
[CrossRef]

Kim, J. H.

M. W. Kim, C. H. Yi, S. H. Rim, C. M. Kim, J. H. Kim, and K. R. Oh, Opt. Express 13, 13651 (2012).
[CrossRef]

Kim, M. W.

M. W. Kim, C. H. Yi, S. H. Rim, C. M. Kim, J. H. Kim, and K. R. Oh, Opt. Express 13, 13651 (2012).
[CrossRef]

Li, Z. S.

Z. S. Li, M. Afzelius, J. Zetterberg, and M. Aldén, Rev. Sci. Instrum. 75, 3208 (2004).
[CrossRef]

Liang, C. H.

Y. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, Chem. Phys. Lett. 357, 314 (2002).
[CrossRef]

Lin, W.

K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, IEEE Photon. Technol. Lett. 16, 828 (2004).
[CrossRef]

Liu, L. Y.

Manar, A.

J. Valenta, D. Guennani, A. Manar, and B. Htjnerlage, Solid State Commun. 98, 6951996.
[CrossRef]

Meng, C.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, Nano Lett. 11, 1122 (2011).
[CrossRef]

Menna, R.

K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, IEEE Photon. Technol. Lett. 16, 828 (2004).
[CrossRef]

Oh, K. R.

M. W. Kim, C. H. Yi, S. H. Rim, C. M. Kim, J. H. Kim, and K. R. Oh, Opt. Express 13, 13651 (2012).
[CrossRef]

Peng, X. S.

Y. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, Chem. Phys. Lett. 357, 314 (2002).
[CrossRef]

Rim, S. H.

M. W. Kim, C. H. Yi, S. H. Rim, C. M. Kim, J. H. Kim, and K. R. Oh, Opt. Express 13, 13651 (2012).
[CrossRef]

Schwefel, H. G. L.

H. G. L. Schwefel, H. E. Türeci, A. D. Stone, and R. K. Chang, Optical Processes in Microcavities (World Scientific, 2003).

Shang, L.

Stone, A. D.

H. G. L. Schwefel, H. E. Türeci, A. D. Stone, and R. K. Chang, Optical Processes in Microcavities (World Scientific, 2003).

Tong, L. M.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, Nano Lett. 11, 1122 (2011).
[CrossRef]

Türeci, H. E.

H. G. L. Schwefel, H. E. Türeci, A. D. Stone, and R. K. Chang, Optical Processes in Microcavities (World Scientific, 2003).

Valenta, J.

J. Valenta, D. Guennani, A. Manar, and B. Htjnerlage, Solid State Commun. 98, 6951996.
[CrossRef]

Wang, G. Z.

Y. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, Chem. Phys. Lett. 357, 314 (2002).
[CrossRef]

Wang, P.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, Nano Lett. 11, 1122 (2011).
[CrossRef]

Wang, S. S.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, Nano Lett. 11, 1122 (2011).
[CrossRef]

Wang, Y.

Y. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, Chem. Phys. Lett. 357, 314 (2002).
[CrossRef]

Xiao, Y.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, Nano Lett. 11, 1122 (2011).
[CrossRef]

Xu, L.

Ye, Y.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, Nano Lett. 11, 1122 (2011).
[CrossRef]

Yi, C. H.

M. W. Kim, C. H. Yi, S. H. Rim, C. M. Kim, J. H. Kim, and K. R. Oh, Opt. Express 13, 13651 (2012).
[CrossRef]

Yu, H. K.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, Nano Lett. 11, 1122 (2011).
[CrossRef]

Zetterberg, J.

Z. S. Li, M. Afzelius, J. Zetterberg, and M. Aldén, Rev. Sci. Instrum. 75, 3208 (2004).
[CrossRef]

Zhang, L. D.

Y. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, Chem. Phys. Lett. 357, 314 (2002).
[CrossRef]

Chem. Phys. Lett.

Y. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, Chem. Phys. Lett. 357, 314 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, IEEE Photon. Technol. Lett. 16, 828 (2004).
[CrossRef]

G. Griffel, IEEE Photon. Technol. Lett. 12, 1642 (2000).
[CrossRef]

J. Lightwave Technol.

C. Goyal, R. L. Gallawa, and A. K. Ghatak, J. Lightwave Technol. 8, 768 (1990).
[CrossRef]

Nano Lett.

Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, Nano Lett. 11, 1122 (2011).
[CrossRef]

Opt. Express

M. W. Kim, C. H. Yi, S. H. Rim, C. M. Kim, J. H. Kim, and K. R. Oh, Opt. Express 13, 13651 (2012).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

Z. S. Li, M. Afzelius, J. Zetterberg, and M. Aldén, Rev. Sci. Instrum. 75, 3208 (2004).
[CrossRef]

Solid State Commun.

J. Valenta, D. Guennani, A. Manar, and B. Htjnerlage, Solid State Commun. 98, 6951996.
[CrossRef]

Other

http://wwwhome.math.utwente.nl/~hammer/oms.html .

H. G. L. Schwefel, H. E. Türeci, A. D. Stone, and R. K. Chang, Optical Processes in Microcavities (World Scientific, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Lasing spectra of a ring microcavity. Inset on the top-right and top-left corners show light–light curve and schematic diagram of ring microcavity, respectively. (b) Lasing spectra of the two polarizations of the ring microcavity under 30kW/cm2 excitation. Inset on the top-right and top-left corners show the light–light curve and polar plot of the polarization intensity versus rotational angle.

Fig. 2.
Fig. 2.

Plot of threshold “open squares” and Q-factor “filled squares” versus D of the ring microcavities. The threshold “open circles” and Q-factor “filled circles” of ZnS microbelt FP cavities are also plotted for comparison.

Fig. 3.
Fig. 3.

Measured lasing spectra of the ring microcavities and their coupled two-ring microcavity. Inset on the top-right and top-left corners show far-field profile and photo of the coupled two-ring microcavity, respectively.

Fig. 4.
Fig. 4.

Schematic diagrams of ring microcavity constructed using two optical fibers with diameters (a) D1=D2=45μm and (b) D1=45μm, D2=20μm. The corresponding measured far-field profiles, and calculated near-field distributions are given in (c), (d) and (e), (f), respectively.

Fig. 5.
Fig. 5.

Lasing spectra of the coupled asymmetric microcavity. Insets on the top-right and top-left corners show the schematic diagram and measured far-field profile of the coupled asymmetric microcavity.

Metrics