Abstract

A concept of a fiber optic sensor consisting of a light source, a fiber coil, and a two-beam interferometer measuring angular acceleration is described. The principle differs essentially from common fiber optic gyroscopes (FOGs) still exploiting the Sagnac effect but sending light of the monochromatic source only unidirectionally into the fiber coil. A change in the optical path length in the fiber coil due to the Sagnac effect maintains proportionality to angular acceleration and could be detected by means of a subsequent two-beam interferometer. The sensitivity of this approach is in contrast to common FOGs determined not only by the total surface area enclosed by the fiber turns but also by the characteristics of the particular interferometer used.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Sagnac, C. R. Acad. Sci. (Paris) 157, 708 (1913).
  2. G. Sagnac, C. R. Acad. Sci. (Paris) 157, 1410 (1913).
  3. M. v. Laue, Ann. Phys. 367, 448 (1920).
    [CrossRef]
  4. A. Michelson, J. Phil. Mag. 8(48), 716 (1904).
    [CrossRef]
  5. E. Post, Rev. Mod. Phys. 39, 475 (1967).
    [CrossRef]
  6. R. Anderson, H. Bilger, and G. Stedman, Am. J. Phys. 62, 975 (1994).
    [CrossRef]
  7. A. Kersey and A. Dandridge, IEEE Trans. Comp. Hybrids Manuf. Technol. 13, 137 (1990).
  8. B. Lee, Opt. Fiber Technol. 9, 57 (2003).
    [CrossRef]
  9. B. Culshaw, Opt. Photon. News 16(11), 24 (2005).
    [CrossRef]
  10. V. Vali and R. Shorthill, Appl. Opt. 15, 1099 (1976).
    [CrossRef]
  11. H. Lefèvre, Opt. Rev. 4, 20 (1997).
  12. G. Pavlath and H. Shaw, Appl. Opt. 21, 1752 (1982).
    [CrossRef]
  13. C. Doerr, K. Tamura, M. Shirasaki, H. Haus, and E. Ippen, Appl. Opt. 33, 8062 (1994).
    [CrossRef]
  14. R. Meyer, S. Ezekiel, D. Stowe, and V. Tekippe, Opt. Lett. 8, 644 (1983).
    [CrossRef]
  15. K. Ono, Y. Nishiura, and M. Nishikawa, Appl. Opt. 30, 1070 (1991).
    [CrossRef]
  16. L. Barker and R. Hollenbach, J. Appl. Phys. 43, 4669 (1972).
    [CrossRef]
  17. G. Smeets and A. George, J. Appl. Phys. 49, 1589 (1978).

2005 (1)

B. Culshaw, Opt. Photon. News 16(11), 24 (2005).
[CrossRef]

2003 (1)

B. Lee, Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

1997 (1)

H. Lefèvre, Opt. Rev. 4, 20 (1997).

1994 (2)

1991 (1)

1990 (1)

A. Kersey and A. Dandridge, IEEE Trans. Comp. Hybrids Manuf. Technol. 13, 137 (1990).

1983 (1)

1982 (1)

1978 (1)

G. Smeets and A. George, J. Appl. Phys. 49, 1589 (1978).

1976 (1)

1972 (1)

L. Barker and R. Hollenbach, J. Appl. Phys. 43, 4669 (1972).
[CrossRef]

1967 (1)

E. Post, Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

1920 (1)

M. v. Laue, Ann. Phys. 367, 448 (1920).
[CrossRef]

1913 (2)

G. Sagnac, C. R. Acad. Sci. (Paris) 157, 708 (1913).

G. Sagnac, C. R. Acad. Sci. (Paris) 157, 1410 (1913).

1904 (1)

A. Michelson, J. Phil. Mag. 8(48), 716 (1904).
[CrossRef]

Anderson, R.

R. Anderson, H. Bilger, and G. Stedman, Am. J. Phys. 62, 975 (1994).
[CrossRef]

Barker, L.

L. Barker and R. Hollenbach, J. Appl. Phys. 43, 4669 (1972).
[CrossRef]

Bilger, H.

R. Anderson, H. Bilger, and G. Stedman, Am. J. Phys. 62, 975 (1994).
[CrossRef]

Culshaw, B.

B. Culshaw, Opt. Photon. News 16(11), 24 (2005).
[CrossRef]

Dandridge, A.

A. Kersey and A. Dandridge, IEEE Trans. Comp. Hybrids Manuf. Technol. 13, 137 (1990).

Doerr, C.

Ezekiel, S.

George, A.

G. Smeets and A. George, J. Appl. Phys. 49, 1589 (1978).

Haus, H.

Hollenbach, R.

L. Barker and R. Hollenbach, J. Appl. Phys. 43, 4669 (1972).
[CrossRef]

Ippen, E.

Kersey, A.

A. Kersey and A. Dandridge, IEEE Trans. Comp. Hybrids Manuf. Technol. 13, 137 (1990).

Laue, M. v.

M. v. Laue, Ann. Phys. 367, 448 (1920).
[CrossRef]

Lee, B.

B. Lee, Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

Lefèvre, H.

H. Lefèvre, Opt. Rev. 4, 20 (1997).

Meyer, R.

Michelson, A.

A. Michelson, J. Phil. Mag. 8(48), 716 (1904).
[CrossRef]

Nishikawa, M.

Nishiura, Y.

Ono, K.

Pavlath, G.

Post, E.

E. Post, Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

Sagnac, G.

G. Sagnac, C. R. Acad. Sci. (Paris) 157, 708 (1913).

G. Sagnac, C. R. Acad. Sci. (Paris) 157, 1410 (1913).

Shaw, H.

Shirasaki, M.

Shorthill, R.

Smeets, G.

G. Smeets and A. George, J. Appl. Phys. 49, 1589 (1978).

Stedman, G.

R. Anderson, H. Bilger, and G. Stedman, Am. J. Phys. 62, 975 (1994).
[CrossRef]

Stowe, D.

Tamura, K.

Tekippe, V.

Vali, V.

Am. J. Phys. (1)

R. Anderson, H. Bilger, and G. Stedman, Am. J. Phys. 62, 975 (1994).
[CrossRef]

Ann. Phys. (1)

M. v. Laue, Ann. Phys. 367, 448 (1920).
[CrossRef]

Appl. Opt. (4)

C. R. Acad. Sci. (Paris) (2)

G. Sagnac, C. R. Acad. Sci. (Paris) 157, 708 (1913).

G. Sagnac, C. R. Acad. Sci. (Paris) 157, 1410 (1913).

IEEE Trans. Comp. Hybrids Manuf. Technol. (1)

A. Kersey and A. Dandridge, IEEE Trans. Comp. Hybrids Manuf. Technol. 13, 137 (1990).

J. Appl. Phys. (2)

L. Barker and R. Hollenbach, J. Appl. Phys. 43, 4669 (1972).
[CrossRef]

G. Smeets and A. George, J. Appl. Phys. 49, 1589 (1978).

J. Phil. Mag. (1)

A. Michelson, J. Phil. Mag. 8(48), 716 (1904).
[CrossRef]

Opt. Fiber Technol. (1)

B. Lee, Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

B. Culshaw, Opt. Photon. News 16(11), 24 (2005).
[CrossRef]

Opt. Rev. (1)

H. Lefèvre, Opt. Rev. 4, 20 (1997).

Rev. Mod. Phys. (1)

E. Post, Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Common bidirectional principle of a fiber optic angular velocity sensor.

Fig. 2.
Fig. 2.

Unidirectional principle of a fiber optic angular acceleration sensor.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ΔφS=8πNA1cFλLΩ.
τ=2πR1cFRΩN
S=2πRcFcFRΩN
dν=1λLdSdt.
dν=2NA1cFλLdΩdt.
d(ΔφM)2π=2NAΔϕc01cFλLdΩdt.
d(ΔφM)d(ΔφS)=12Δϕc0dΩdtdΩ.
d(ΔφS)=8πNA1cFλLdΩ,
d(ΔφM)=4πNAΔϕc01cFλLdΩdt.
d(ΔφM)d(ΔφS)=12Δϕc0dΩdtdΩ.
d(ΔφM)d(ΔφS)12[106]dΩdtdΩ
i=i0cos2(Δφ2).
ii0=12d(Δφ)sinΔφ.
ii0=12d(Δφ)=2πNAΔϕc01cFλLdΩdt.
[102]=2πNA[102][108]1[108][5·107]dΩdt,
[5·105]=2πNAdΩdt,
[105]NA=dΩdt[rad/s2],
[103]NA=dΩdt[deg/s2].

Metrics