Abstract

In this Letter, we address the question of the physical validity of a depolarizing differential matrix. A parameterization of the diagonal terms of these depolarizing differential matrices is proposed. It ensures that the generators associated with diagonal depolarization terms lead to physical Mueller matrices. The validity of this parameterization is discussed. A condition is derived and related to the spatial extension of inhomogeneities with respect to the optical path length as proposed by Ossikovski [Opt. Lett. 36, 2330 (2011)].

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Jones, J. Opt. Soc. Am. 38, 671 (1948).
    [CrossRef]
  2. R. M. A. Azzam, J. Opt. Soc. Am. 68, 1756 (1978).
    [CrossRef]
  3. N. Ortega-Quijano and J. L. Arce-Diego, Opt. Lett. 36, 2429 (2011).
    [CrossRef]
  4. R. Ossikovski, Opt. Lett. 36, 2330 (2011).
    [CrossRef]
  5. N. Ortega-Quijano, B. Haj-Ibrahim, E. García-Caurel, J. Arce-Diego, and R. Ossikovski, Opt. Express 20, 1151 (2012).
    [CrossRef]
  6. T. Germer, Opt. Lett. 37, 921 (2012).
    [CrossRef]
  7. R. A. Chipman, in Handbook of Optics, 3rd ed. (McGraw-Hill, 2009), Vol. 1.
  8. H. D. Noble and R. A. Chipman, Opt. Express 20, 17(2012).
    [CrossRef]
  9. B. N. Simon, S. Simon, N. Mukunda, F. Gori, M. Santarsiero, R. Borghi, and R. Simon, J. Opt. Soc. Am. A 27, 188(2010).
    [CrossRef]
  10. A. V. Gopala Rao, K. S. Mallesh, and Sudha, J. Mod. Opt. 45, 955 (1998).
    [CrossRef]
  11. C. R. Givens and B. Kostinski, J. Mod. Opt. 40, 471 (1993).
    [CrossRef]
  12. S. R. Cloude, Optik 75, 26 (1986).

2012

2011

2010

1998

A. V. Gopala Rao, K. S. Mallesh, and Sudha, J. Mod. Opt. 45, 955 (1998).
[CrossRef]

1993

C. R. Givens and B. Kostinski, J. Mod. Opt. 40, 471 (1993).
[CrossRef]

1986

S. R. Cloude, Optik 75, 26 (1986).

1978

1948

Arce-Diego, J.

Arce-Diego, J. L.

Azzam, R. M. A.

Borghi, R.

Chipman, R. A.

H. D. Noble and R. A. Chipman, Opt. Express 20, 17(2012).
[CrossRef]

R. A. Chipman, in Handbook of Optics, 3rd ed. (McGraw-Hill, 2009), Vol. 1.

Cloude, S. R.

S. R. Cloude, Optik 75, 26 (1986).

García-Caurel, E.

Germer, T.

Givens, C. R.

C. R. Givens and B. Kostinski, J. Mod. Opt. 40, 471 (1993).
[CrossRef]

Gopala Rao, A. V.

A. V. Gopala Rao, K. S. Mallesh, and Sudha, J. Mod. Opt. 45, 955 (1998).
[CrossRef]

Gori, F.

Haj-Ibrahim, B.

Jones, R. C.

Kostinski, B.

C. R. Givens and B. Kostinski, J. Mod. Opt. 40, 471 (1993).
[CrossRef]

Mallesh, K. S.

A. V. Gopala Rao, K. S. Mallesh, and Sudha, J. Mod. Opt. 45, 955 (1998).
[CrossRef]

Mukunda, N.

Noble, H. D.

Ortega-Quijano, N.

Ossikovski, R.

Santarsiero, M.

Simon, B. N.

Simon, R.

Simon, S.

Sudha,

A. V. Gopala Rao, K. S. Mallesh, and Sudha, J. Mod. Opt. 45, 955 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Geometric interpretation of correlation of the complex electric field vector and relation to S2 and S3 Stokes components. Two positions (labeled 1 and 2) of the vector with the same S3 Stokes component are represented.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

M(z)=exp(z·m)withm=j=015djGj,
m=[d0d1+d7d2+d8d3+d9d1d7d0d13d12+d6d11d5d2d8d12d6d0d14d10+d4d3d9d11+d5d10d4d0d15].
M=LlM(1)Lr
d1d2d3d0,d1+d2+d3d0,d1+d2d3d0,d1d2+d3d0.
{S0=ExEx*+EyEy*S1=ExEx*EyEy*S2=2Re(ExEy*)S3=2Im(ExEy*),
mD=diag(0,k3k2,k1k3,k1k2).
mD=12diag(k1+k2+k3,k1k2k3,k2k1k3,k3k1k2),
MD=diag(1,exp[z(k3+k2)],exp[z(k1+k3)],exp[z(k1+k2)]).
{exp[z(k3+k2)]+exp[z(k1+k3)]+exp[z(k1+k2)]1exp[z(k3+k2)]exp[z(k1+k3)]+exp[z(k1+k2)]1exp[z(k3+k2)]+exp[z(k1+k3)]exp[z(k1+k2)]1.
{12k1z+o(z2)112k2z+o(z2)112k3z+o(z2)1.

Metrics