Abstract

To distribute microwaves over fibers, optical single-sideband (SSB) modulation signals are preferred to optical double-sideband (DSB) modulation signals. This study investigates an optically injected semiconductor laser at period-one nonlinear dynamics for optical DSB-to-SSB conversion. For the operating microwave frequencies up to 40 GHz investigated in this study, the proposed system regenerates or even enhances the microwave features of an optical DSB input while converting its optical feature into SSB with an intensity difference of at least 20 dB. The bit-error ratio at 622Mb/s is down to 109 with a sensitivity improvement of up to 3 dB. The proposed system can be self-adapted to certain changes in the operating microwave frequency and can operate stably under certain fluctuations in the input optical power and frequency.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Donati and S. K. Hwang, Prog. Quantum Electron. 36, 293 (2012).
    [CrossRef]
  2. S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
    [CrossRef]
  3. S. K. Hwang, H. F. Chen, and C. Y. Lin, Opt. Lett. 34, 812 (2009).
    [CrossRef]
  4. C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, IEEE J. Quantum Electron. 48, 1389 (2012).
    [CrossRef]
  5. X. Q. Qi and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 17, 1198 (2011).
    [CrossRef]
  6. M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
    [CrossRef]
  7. Y. S. Yuan and F. Y. Lin, IEEE Photon. J. 3, 644 (2011).
    [CrossRef]
  8. A. Quirce and A. Valle, Opt. Express 20, 13390 (2012).
    [CrossRef]
  9. T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
    [CrossRef]
  10. S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
    [CrossRef]
  11. J. P. Zhuang and S. C. Chan, Opt. Lett. 38, 344 (2013).
    [CrossRef]
  12. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators” (to be published).
  13. U. Gliese, S. Norskov, and T. N. Nielsen, IEEE Trans. Microwave Theor. Tech. 44, 1716 (1996).
    [CrossRef]
  14. A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photon. Technol. Lett. 16, 605 (2004).
    [CrossRef]
  15. G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theor. Tech. 45, 1410 (1997).
    [CrossRef]

2013 (1)

2012 (3)

A. Quirce and A. Valle, Opt. Express 20, 13390 (2012).
[CrossRef]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, IEEE J. Quantum Electron. 48, 1389 (2012).
[CrossRef]

S. Donati and S. K. Hwang, Prog. Quantum Electron. 36, 293 (2012).
[CrossRef]

2011 (2)

X. Q. Qi and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 17, 1198 (2011).
[CrossRef]

Y. S. Yuan and F. Y. Lin, IEEE Photon. J. 3, 644 (2011).
[CrossRef]

2010 (1)

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

2009 (1)

2006 (1)

2004 (2)

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[CrossRef]

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photon. Technol. Lett. 16, 605 (2004).
[CrossRef]

1999 (1)

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[CrossRef]

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theor. Tech. 45, 1410 (1997).
[CrossRef]

1996 (1)

U. Gliese, S. Norskov, and T. N. Nielsen, IEEE Trans. Microwave Theor. Tech. 44, 1716 (1996).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theor. Tech. 45, 1410 (1997).
[CrossRef]

AlMulla, M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators” (to be published).

Anandarajah, P.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photon. Technol. Lett. 16, 605 (2004).
[CrossRef]

Barry, L. P.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photon. Technol. Lett. 16, 605 (2004).
[CrossRef]

Chan, S. C.

J. P. Zhuang and S. C. Chan, Opt. Lett. 38, 344 (2013).
[CrossRef]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, IEEE J. Quantum Electron. 48, 1389 (2012).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
[CrossRef]

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[CrossRef]

Chen, H. F.

Chu, C. H.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, IEEE J. Quantum Electron. 48, 1389 (2012).
[CrossRef]

Doft, F.

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[CrossRef]

Donati, S.

S. Donati and S. K. Hwang, Prog. Quantum Electron. 36, 293 (2012).
[CrossRef]

Gliese, U.

U. Gliese, S. Norskov, and T. N. Nielsen, IEEE Trans. Microwave Theor. Tech. 44, 1716 (1996).
[CrossRef]

Hwang, S. K.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, IEEE J. Quantum Electron. 48, 1389 (2012).
[CrossRef]

S. Donati and S. K. Hwang, Prog. Quantum Electron. 36, 293 (2012).
[CrossRef]

S. K. Hwang, H. F. Chen, and C. Y. Lin, Opt. Lett. 34, 812 (2009).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
[CrossRef]

Kaszubowska, A.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photon. Technol. Lett. 16, 605 (2004).
[CrossRef]

Kovanis, V.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators” (to be published).

Lester, L. F.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

Li, Y.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

Lin, C. Y.

Lin, F. Y.

Y. S. Yuan and F. Y. Lin, IEEE Photon. J. 3, 644 (2011).
[CrossRef]

Lin, S. L.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, IEEE J. Quantum Electron. 48, 1389 (2012).
[CrossRef]

Liu, J. M.

X. Q. Qi and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 17, 1198 (2011).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, Opt. Lett. 31, 2254 (2006).
[CrossRef]

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[CrossRef]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators” (to be published).

Naderi, N. A.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

Nielsen, T. N.

U. Gliese, S. Norskov, and T. N. Nielsen, IEEE Trans. Microwave Theor. Tech. 44, 1716 (1996).
[CrossRef]

Norskov, S.

U. Gliese, S. Norskov, and T. N. Nielsen, IEEE Trans. Microwave Theor. Tech. 44, 1716 (1996).
[CrossRef]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theor. Tech. 45, 1410 (1997).
[CrossRef]

Pochet, M.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

Qi, X. Q.

X. Q. Qi and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 17, 1198 (2011).
[CrossRef]

Quirce, A.

Simpson, T. B.

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[CrossRef]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators” (to be published).

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theor. Tech. 45, 1410 (1997).
[CrossRef]

Usechak, N. G.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators” (to be published).

Valle, A.

Yuan, Y. S.

Y. S. Yuan and F. Y. Lin, IEEE Photon. J. 3, 644 (2011).
[CrossRef]

Zhuang, J. P.

IEEE J. Quantum Electron. (1)

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, IEEE J. Quantum Electron. 48, 1389 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

X. Q. Qi and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 17, 1198 (2011).
[CrossRef]

S. C. Chan and J. M. Liu, IEEE J. Sel. Top. Quantum Electron. 10, 1025 (2004).
[CrossRef]

IEEE Photon. J. (1)

Y. S. Yuan and F. Y. Lin, IEEE Photon. J. 3, 644 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, IEEE Photon. Technol. Lett. 22, 763 (2010).
[CrossRef]

T. B. Simpson and F. Doft, IEEE Photon. Technol. Lett. 11, 1476 (1999).
[CrossRef]

A. Kaszubowska, P. Anandarajah, and L. P. Barry, IEEE Photon. Technol. Lett. 16, 605 (2004).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (2)

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theor. Tech. 45, 1410 (1997).
[CrossRef]

U. Gliese, S. Norskov, and T. N. Nielsen, IEEE Trans. Microwave Theor. Tech. 44, 1716 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Prog. Quantum Electron. (1)

S. Donati and S. K. Hwang, Prog. Quantum Electron. 36, 293 (2012).
[CrossRef]

Other (1)

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, IEEE J. Sel. Top. Quantum Electron. “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators” (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the experimental apparatus. TL, tunable laser; EM, external modulator; PG, pattern generator; M, mixer; PA, power adjuster; PC, polarization controller; C, circulator; LD, laser diode; OSA, optical spectrum analyzer; PD, photodiode; MSA, microwave spectrum analyzer; LPF, low-pass filter; ET, error tester.

Fig. 2.
Fig. 2.

(a), (b), (d) Optical spectra of CW and DSB inputs (red curves), P1 and SSB outputs (blue curves), and free-running output (gray curve). For visibility, blue curves are downshifted with respect to red curves. The x axes are relative to the free-running frequency of the injected laser. (c) Microwave spectra of (b), centering at 35 GHz with a 10 Hz resolution. Inputs are all kept at (ξi,fi)=(0.91,23GHz).

Fig. 3.
Fig. 3.

(a) BER in terms of received optical power. Solid squares, DSB input at (ξi,fi,fm)=(0.91,23GHz,35GHz); solid circles, SSB output at (ξi,fi,fm)=(0.91,23GHz,35GHz); solid up-triangles, SSB output at (ξi,fi,fm)=(0.6,23GHz,35GHz); solid down-triangles, SSB output at (ξi,fi,fm)=(0.91,30GHz,35GHz); open squares, DSB input at (ξi,fi,fm)=(0.91,23GHz,40GHz); open circles, SSB output at (ξi,fi,fm)=(0.91,23GHz,40GHz). All bit rates are fixed at 622Mb/s with a bit sequence of 2231. (b), (c) Eye diagrams for solid squares and circles in (a), respectively, at BER=109.

Fig. 4.
Fig. 4.

(a), (b) Optical spectra of DSB inputs (red curves) and SSB outputs (blue curves) at (ξi,fi)=(0.91,23GHz) for fm=40 and 45 GHz, respectively. (c), (d) Optical spectra of P1 outputs (red curves) and SSB outputs (blue curves) at (ξi,fi)=(0.6,23GHz) and (0.91, 30 GHz), respectively. The x axes are relative to the free-running frequency of the injected laser. For visibility, blue curves are downshifted with respect to red curves.

Fig. 5.
Fig. 5.

(a) f0 and (b) R in terms of ξi at fi=23GHz (squares) and in terms of fi at ξi=0.91 (circles).

Metrics