Abstract

A cost-effective technique for coupling a polymer optical fiber (POF) with 50 μm core diameter to a silica single-mode fiber (SMF) with 8 μm core diameter is proposed, which can, by exploiting a multimode fiber with 50 μm core diameter, avoid the damage or burning at the butt-coupled POF/SMF interface. Using this coupling technique, we also show that the Brillouin signal in a POF can be enhanced by combined use of pulsed pump and an erbium-doped fiber amplifier. When the pulsed pump with average optical power of 18 dBm (63 mW), duty ratio of 15%, and pulse period of 2 μs is launched into a 200 m-long POF, 4 dB enhancement of the Stokes power is obtained compared to that with 18 dBm continuous wave pump. The relatively small enhancement is probably caused by the high Brillouin threshold of POFs. The Stokes power dependence on duty ratio is nonmonotonic, which might originate from a longer phonon lifetime in POFs than that in silica SMFs.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  2. S. Norcia, S. Tonda-Goldstein, D. Dolfi, and J.-P. Huignard, Opt. Lett. 28, 1888 (2003).
    [CrossRef]
  3. Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
    [CrossRef]
  4. K. Y. Song, M. G. Herraez, and L. Thevenaz, Opt. Express 13, 82 (2005).
    [CrossRef]
  5. T. Horiguchi and M. Tateda, J. Lightwave Technol. 7, 1170 (1989).
    [CrossRef]
  6. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).
  7. D. Garus, K. Krebber, F. Schliep, and T. Gogolla, Opt. Lett. 21, 1402 (1996).
    [CrossRef]
  8. K. Hotate and T. Hasegawa, IEICE Trans. Electron. E83-C, 405 (2000).
  9. Y. Mizuno, W. Zou, Z. He, and K. Hotate, Opt. Express 16, 12148 (2008).
    [CrossRef]
  10. Y. Mizuno and K. Nakamura, Appl. Phys. Lett. 97, 021103 (2010).
    [CrossRef]
  11. Y. Mizuno and K. Nakamura, Opt. Lett. 35, 3985 (2010).
    [CrossRef]
  12. N. Hayashi, Y. Mizuno, and K. Nakamura, Opt. Express 20, 21101 (2012).
    [CrossRef]
  13. A. Yeniay, J. M. Delavaux, and J. Toulouse, J. Lightwave Technol. 20, 1425 (2002).
    [CrossRef]
  14. M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
    [CrossRef]
  15. R. B. Jenkins, R. M. Sova, and R. I. Joseph, J. Lightwave Technol. 25, 763 (2007).
    [CrossRef]
  16. Y. Mizuno, T. Ishigure, and K. Nakamura, IEEE Photon. Technol. Lett. 23, 1863 (2011).
    [CrossRef]
  17. Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, Opt. Lett. 36, 2378 (2011).
    [CrossRef]
  18. Y. Mizuno and K. Nakamura, Appl. Phys. Express 5, 032501 (2012).
    [CrossRef]
  19. Y. Mizuno, N. Hayashi, and K. Nakamura, Electron. Lett. 48, 1300 (2012).
    [CrossRef]
  20. K. Tei, Y. Tsuruoka, T. Uchiyama, and T. Fujioka, Jpn. J. Appl. Phys. 40, 3191 (2001).
    [CrossRef]
  21. G. W. Faris, L. E. Jusinski, and A. P. Hickman, J. Opt. Soc. Am. B 10, 587 (1993).
    [CrossRef]

2012 (3)

N. Hayashi, Y. Mizuno, and K. Nakamura, Opt. Express 20, 21101 (2012).
[CrossRef]

Y. Mizuno and K. Nakamura, Appl. Phys. Express 5, 032501 (2012).
[CrossRef]

Y. Mizuno, N. Hayashi, and K. Nakamura, Electron. Lett. 48, 1300 (2012).
[CrossRef]

2011 (2)

Y. Mizuno, T. Ishigure, and K. Nakamura, IEEE Photon. Technol. Lett. 23, 1863 (2011).
[CrossRef]

Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, Opt. Lett. 36, 2378 (2011).
[CrossRef]

2010 (2)

Y. Mizuno and K. Nakamura, Appl. Phys. Lett. 97, 021103 (2010).
[CrossRef]

Y. Mizuno and K. Nakamura, Opt. Lett. 35, 3985 (2010).
[CrossRef]

2008 (1)

2007 (2)

2005 (1)

2003 (1)

2002 (1)

2001 (1)

K. Tei, Y. Tsuruoka, T. Uchiyama, and T. Fujioka, Jpn. J. Appl. Phys. 40, 3191 (2001).
[CrossRef]

2000 (1)

K. Hotate and T. Hasegawa, IEICE Trans. Electron. E83-C, 405 (2000).

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

1996 (1)

1993 (2)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

G. W. Faris, L. E. Jusinski, and A. P. Hickman, J. Opt. Soc. Am. B 10, 587 (1993).
[CrossRef]

1989 (1)

T. Horiguchi and M. Tateda, J. Lightwave Technol. 7, 1170 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef]

Delavaux, J. M.

Dolfi, D.

Faris, G. W.

Fujioka, T.

K. Tei, Y. Tsuruoka, T. Uchiyama, and T. Fujioka, Jpn. J. Appl. Phys. 40, 3191 (2001).
[CrossRef]

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

Garus, D.

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef]

Gogolla, T.

Hasegawa, T.

K. Hotate and T. Hasegawa, IEICE Trans. Electron. E83-C, 405 (2000).

Hayashi, N.

N. Hayashi, Y. Mizuno, and K. Nakamura, Opt. Express 20, 21101 (2012).
[CrossRef]

Y. Mizuno, N. Hayashi, and K. Nakamura, Electron. Lett. 48, 1300 (2012).
[CrossRef]

He, Z.

Herraez, M. G.

Hickman, A. P.

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

T. Horiguchi and M. Tateda, J. Lightwave Technol. 7, 1170 (1989).
[CrossRef]

Hotate, K.

Huignard, J.-P.

Ishigure, T.

Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, Opt. Lett. 36, 2378 (2011).
[CrossRef]

Y. Mizuno, T. Ishigure, and K. Nakamura, IEEE Photon. Technol. Lett. 23, 1863 (2011).
[CrossRef]

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

Jenkins, R. B.

Joseph, R. I.

Jusinski, L. E.

Kishi, M.

Koyamada, Y.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

Krebber, K.

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

Mizuno, Y.

N. Hayashi, Y. Mizuno, and K. Nakamura, Opt. Express 20, 21101 (2012).
[CrossRef]

Y. Mizuno, N. Hayashi, and K. Nakamura, Electron. Lett. 48, 1300 (2012).
[CrossRef]

Y. Mizuno and K. Nakamura, Appl. Phys. Express 5, 032501 (2012).
[CrossRef]

Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, Opt. Lett. 36, 2378 (2011).
[CrossRef]

Y. Mizuno, T. Ishigure, and K. Nakamura, IEEE Photon. Technol. Lett. 23, 1863 (2011).
[CrossRef]

Y. Mizuno and K. Nakamura, Opt. Lett. 35, 3985 (2010).
[CrossRef]

Y. Mizuno and K. Nakamura, Appl. Phys. Lett. 97, 021103 (2010).
[CrossRef]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, Opt. Express 16, 12148 (2008).
[CrossRef]

Nakamura, K.

N. Hayashi, Y. Mizuno, and K. Nakamura, Opt. Express 20, 21101 (2012).
[CrossRef]

Y. Mizuno and K. Nakamura, Appl. Phys. Express 5, 032501 (2012).
[CrossRef]

Y. Mizuno, N. Hayashi, and K. Nakamura, Electron. Lett. 48, 1300 (2012).
[CrossRef]

Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, Opt. Lett. 36, 2378 (2011).
[CrossRef]

Y. Mizuno, T. Ishigure, and K. Nakamura, IEEE Photon. Technol. Lett. 23, 1863 (2011).
[CrossRef]

Y. Mizuno and K. Nakamura, Opt. Lett. 35, 3985 (2010).
[CrossRef]

Y. Mizuno and K. Nakamura, Appl. Phys. Lett. 97, 021103 (2010).
[CrossRef]

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Norcia, S.

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Schliep, F.

Song, K. Y.

Sova, R. M.

Tateda, M.

T. Horiguchi and M. Tateda, J. Lightwave Technol. 7, 1170 (1989).
[CrossRef]

Tei, K.

K. Tei, Y. Tsuruoka, T. Uchiyama, and T. Fujioka, Jpn. J. Appl. Phys. 40, 3191 (2001).
[CrossRef]

Thevenaz, L.

K. Y. Song, M. G. Herraez, and L. Thevenaz, Opt. Express 13, 82 (2005).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Tonda-Goldstein, S.

Toulouse, J.

Tsuruoka, Y.

K. Tei, Y. Tsuruoka, T. Uchiyama, and T. Fujioka, Jpn. J. Appl. Phys. 40, 3191 (2001).
[CrossRef]

Uchiyama, T.

K. Tei, Y. Tsuruoka, T. Uchiyama, and T. Fujioka, Jpn. J. Appl. Phys. 40, 3191 (2001).
[CrossRef]

Yeniay, A.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef]

Zou, W.

Appl. Phys. Express (1)

Y. Mizuno and K. Nakamura, Appl. Phys. Express 5, 032501 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Mizuno and K. Nakamura, Appl. Phys. Lett. 97, 021103 (2010).
[CrossRef]

Electron. Lett. (1)

Y. Mizuno, N. Hayashi, and K. Nakamura, Electron. Lett. 48, 1300 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Mizuno, T. Ishigure, and K. Nakamura, IEEE Photon. Technol. Lett. 23, 1863 (2011).
[CrossRef]

IEICE Trans. Commun. (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, IEICE Trans. Commun. E76-B, 382 (1993).

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, IEICE Trans. Electron. E83-C, 405 (2000).

J. Lightwave Technol. (4)

A. Yeniay, J. M. Delavaux, and J. Toulouse, J. Lightwave Technol. 20, 1425 (2002).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

R. B. Jenkins, R. M. Sova, and R. I. Joseph, J. Lightwave Technol. 25, 763 (2007).
[CrossRef]

T. Horiguchi and M. Tateda, J. Lightwave Technol. 7, 1170 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Tei, Y. Tsuruoka, T. Uchiyama, and T. Fujioka, Jpn. J. Appl. Phys. 40, 3191 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Science (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Definitions of parameters related to optical pulse train.

Fig. 2.
Fig. 2.

Experimental setup. DC, direct current; EDFA, erbium-doped fiber amplifier; ESA, electrical spectrum analyzer; IM, intensity modulator; ISO, isolator; LD, laser diode; PC, polarization controller; PD, photo detector; VOA, variable optical attenuator.

Fig. 3.
Fig. 3.

Concept of MMF-assisted coupling.

Fig. 4.
Fig. 4.

Measured BGSs with and without MMF-assisted coupling.

Fig. 5.
Fig. 5.

Microscopic images of POF ends after measurements (a) with and (b) without MMF-assisted coupling.

Fig. 6.
Fig. 6.

(a) Measured BGS dependence on duty ratio and (b) Stokes power as a function of duty ratio. The inset in (b) shows the measured BGSs with 5% and 15% duty ratio.

Metrics