Abstract

We report on a hitherto unexplored application of squeezed light: for quantum-enhancement of mechanical transduction sensitivity in microcavity optomechanics. Using a toroidal silica microcavity, we experimentally demonstrate measurement of the transduced phase modulation signal in the frequency range 4–5.8 MHz with a sensitivity 0.72(±0.01)dB below the shot noise level. This is achieved for resonant probing in the highly undercoupled regime, by preparing the probe in a weak coherent state with phase squeezed vacuum states at sideband frequencies.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction

Justin D. Cohen, Seán M. Meenehan, and Oskar Painter
Opt. Express 21(9) 11227-11236 (2013)

Analysis and filtering of phase noise in an optical frequency comb at the quantum limit to improve timing measurements

Roman Schmeissner, Valerian Thiel, Clément Jacquard, Claude Fabre, and Nicolas Treps
Opt. Lett. 39(12) 3603-3606 (2014)

Ultrasensitive measurement of microcantilever displacement below the shot-noise limit

Raphael C. Pooser and Benjamin Lawrie
Optica 2(5) 393-399 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription