Abstract

We investigated the scintillation properties of nonuniformly correlated (NUC) beams in atmospheric turbulence and have shown that NUC beams can not only have lower scintillation but also higher intensity than Gaussian–Schell model beams and even higher intensity than coherent Gaussian beams over certain propagation distances.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
    [CrossRef]
  2. G. Gbur and T. D. Visser, Prog. Opt. 55, 285 (2010).
    [CrossRef]
  3. T. J. Schulz, Opt. Lett. 30, 1093 (2005).
    [CrossRef]
  4. J. C. Ricklin and F. M. Davidson, J. Opt. Soc. Am. A 19, 1794 (2002).
    [CrossRef]
  5. H. Lajunen and T. Saastamoinen, Opt. Lett. 36, 4104 (2011).
    [CrossRef]
  6. Z. Tong and O. Korotkova, J. Opt. Soc. Am. A 29, 2154 (2012).
    [CrossRef]
  7. Z. Tong and O. Korotkova, Opt. Lett. 37, 3240 (2012).
    [CrossRef]
  8. Z. Mei, Z. Tong, and O. Korotkova, Opt. Express 20, 26458 (2012).
    [CrossRef]
  9. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  10. Y. Gu and G. Gbur, J. Opt. Soc. Am. A 27, 2621 (2010).
    [CrossRef]
  11. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).
  12. C. H. Gan, Y. Gu, T. D. Visser, and G. Gbur, Plasmonics 7, 313 (2012).
    [CrossRef]

2012

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
[CrossRef]

C. H. Gan, Y. Gu, T. D. Visser, and G. Gbur, Plasmonics 7, 313 (2012).
[CrossRef]

Z. Tong and O. Korotkova, Opt. Lett. 37, 3240 (2012).
[CrossRef]

Z. Tong and O. Korotkova, J. Opt. Soc. Am. A 29, 2154 (2012).
[CrossRef]

Z. Mei, Z. Tong, and O. Korotkova, Opt. Express 20, 26458 (2012).
[CrossRef]

2011

2010

Y. Gu and G. Gbur, J. Opt. Soc. Am. A 27, 2621 (2010).
[CrossRef]

G. Gbur and T. D. Visser, Prog. Opt. 55, 285 (2010).
[CrossRef]

2005

2002

Ahmed, N.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
[CrossRef]

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

Davidson, F. M.

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
[CrossRef]

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
[CrossRef]

Gan, C. H.

C. H. Gan, Y. Gu, T. D. Visser, and G. Gbur, Plasmonics 7, 313 (2012).
[CrossRef]

Gbur, G.

C. H. Gan, Y. Gu, T. D. Visser, and G. Gbur, Plasmonics 7, 313 (2012).
[CrossRef]

G. Gbur and T. D. Visser, Prog. Opt. 55, 285 (2010).
[CrossRef]

Y. Gu and G. Gbur, J. Opt. Soc. Am. A 27, 2621 (2010).
[CrossRef]

Gu, Y.

C. H. Gan, Y. Gu, T. D. Visser, and G. Gbur, Plasmonics 7, 313 (2012).
[CrossRef]

Y. Gu and G. Gbur, J. Opt. Soc. Am. A 27, 2621 (2010).
[CrossRef]

Huang, H.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
[CrossRef]

Korotkova, O.

Lajunen, H.

Mei, Z.

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

Ren, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
[CrossRef]

Ricklin, J. C.

Saastamoinen, T.

Schulz, T. J.

Tong, Z.

Tur, M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
[CrossRef]

Visser, T. D.

C. H. Gan, Y. Gu, T. D. Visser, and G. Gbur, Plasmonics 7, 313 (2012).
[CrossRef]

G. Gbur and T. D. Visser, Prog. Opt. 55, 285 (2010).
[CrossRef]

Wang, J.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
[CrossRef]

Willner, A. E.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
[CrossRef]

Wolf, E.

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

Yan, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
[CrossRef]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
[CrossRef]

Yue, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Photonics

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photonics 6, 488 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Plasmonics

C. H. Gan, Y. Gu, T. D. Visser, and G. Gbur, Plasmonics 7, 313 (2012).
[CrossRef]

Prog. Opt.

G. Gbur and T. D. Visser, Prog. Opt. 55, 285 (2010).
[CrossRef]

Other

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

On-axis scintillation index σ2(0,L) of an NUC beam and a GSM beam as a function of rc/w0. Here, λ=1.55μm, L=2km and w0=0.05m.

Fig. 2.
Fig. 2.

(a) On-axis scintillation index σ2(0,L) and (b) On-axis average intensity I(0,L) of an NUC, a GSM, and a coherent Gaussian beam as a function of the propagation distance L. Here, rc=0.91w0.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

W(ρ1,ρ2)=S(ρ1)S(ρ2)μ(ρ1,ρ2).
S(ρ)=exp(2ρ2w02),
μc(ρ1,ρ2)=exp[(ρ22ρ12)2rc4],
μ0(ρ1,ρ2)=exp(|ρ2ρ1|2r02),
W(ρ1,ρ2)=p(v)H0(ρ1,v)H0*(ρ2,v)dv,
p(v)=1πaexp(v2a2),
H0(ρ,v)=exp(ρ2w02)exp(ikvρ2).
W(ρ1,ρ2)n=1NAn(ρ1)An*(ρ2),
An(ρ)=p(vn)H0(ρ,vn).
σ2(ρ,L)=m=1Nn=1NIm(ρ,L)In(ρ,L)(n=1NIn(ρ,L))21,
In(ρ,L)=|A0n(ρ,L)|2exp{2Re[E1n(ρ,L)]}×exp[E2nn(ρ,L)],
Im(ρ,L)In(ρ,L)=Im(ρ,L)In(ρ,L)×exp{2Re[E2mn(ρ,L)]}×exp{2Re[E3mn(ρ,L)]},
A0n(ρ,L)=p(vn)exp(ikL)1+iαnLexp[αnkρ22(1+iαnL)].
E1n(ρ,L)=πk20LdzΦn(κ)d2κ,
E2mn(ρ,L)=2πk20Ldzexp[i(γmγn*)κ·ρ]×exp[i(γmγn*)(Lz)κ22k]Φn(κ)d2κ,
E3mn(ρ,L)=2πk20Ldzexp[i(γmγn)κ·ρ]×exp[i(γm+γn)(Lz)κ22k]Φn(κ)d2κ,
Φn(κ)=0.033Cn2exp(κ2/κm2)(κ2+κ02)11/6,
ψn(ρ)=μ˜0(un)S(ρ)exp(ikun·ρ).
μc=exp[(Δρ)2rc4/(4ρ¯2)].

Metrics