Abstract

We formulate a simple model based on mass conservation to accurately predict the structural parameters of hollow-core photonic bandgap fibers from knowledge of the second stage preforms from which they are drawn. We show that combining this model with precalculated property maps can allow real-time prediction of the optical properties of manufactured fibers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, IEEE Commun. Mag. 50(2), S31 (2012).
    [CrossRef]
  2. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef]
  3. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, Opt. Express 16, 4337 (2008).
    [CrossRef]
  4. N. A. Mortensen and M. D. Nielsen, Opt. Lett. 29, 349 (2004).
    [CrossRef]
  5. Y. Chen and T. A. Birks, Opt. Mater. Express 3, 346 (2013).
    [CrossRef]
  6. G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, J. Lightwave Technol. 30, 1306 (2012).
    [CrossRef]
  7. T. A. Birks, in Proceedings of the Optical Fiber Communication Conference (IEEE, 2006), paper OFC7.
  8. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, Opt. Express 15, 17577 (2007).
    [CrossRef]
  9. F. Poletti, Opt. Lett. 35, 2837 (2010).
    [CrossRef]
  10. E. N. Fokoua, F. Poletti, and D. J. Richardson, Opt. Express 20, 20980 (2012).
    [CrossRef]

2013 (1)

2012 (3)

2010 (1)

2008 (1)

2007 (1)

2004 (1)

1996 (1)

Amezcua-Correa, R.

Atkin, D. M.

Awaji, Y.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, IEEE Commun. Mag. 50(2), S31 (2012).
[CrossRef]

Birks, T. A.

Broderick, N. G. R.

Chen, Y.

Delgado, A.

Epple, P.

Fokoua, E. N.

Fujimoto, K.

Knight, J. C.

Luzi, G.

Morioka, T.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, IEEE Commun. Mag. 50(2), S31 (2012).
[CrossRef]

Mortensen, N. A.

Nielsen, M. D.

Petrovich, M. N.

Poletti, F.

Rauh, C.

Richardson, D.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, IEEE Commun. Mag. 50(2), S31 (2012).
[CrossRef]

Richardson, D. J.

Russell, P. S. J.

Ryf, R.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, IEEE Commun. Mag. 50(2), S31 (2012).
[CrossRef]

Scharrer, M.

van Brakel, A.

Winzer, P.

T. Morioka, Y. Awaji, R. Ryf, P. Winzer, D. Richardson, and F. Poletti, IEEE Commun. Mag. 50(2), S31 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Two fibers with different expansion ratios. (b) Parameter definitions in ideal HC-PBGF claddings.

Fig. 2.
Fig. 2.

Predicted cladding parameters as a function of expansion ratio for the cane shown in the inset. The error bars are estimated from the uncertainty in acquiring cane parameters.

Fig. 3.
Fig. 3.

SEM images and short length transmission measurements of the three fibers that were drawn. The transmission curves measured by predominantly exciting the fundamental mode via careful central launch are superposed with the simulated percentage of power in the core.

Fig. 4.
Fig. 4.

Property maps for HC-PBGFs as function of cladding parameters. The colormap shows Δλ/λc and the dotted black contour lines are for λc/Λ. The red line represents possible fibers from the 7c cane, while the blue line is for the 19c one. White stars are the predicted sample properties, and yellow dots the corresponding measured ones. The five 19c samples had expansion 0.437, 0.441, 0.458, 0.473, and 0.482, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

πOD24(1e12)dl1=πOD24(1e22)dl2.
Λ1e1=Λ2e2Λ2=e2e1Λ1,
Ar=(3π2)(Dc2d)2(dΛ)2Λ2+3Dc2ddΛ(1dΛ)Λ2+34(1dΛ)2Λ2.
At=2Ar+3(1Dc/d)3(dΛ)(1dΛ)Λ2.
Ar1×dl1=Ar2×dl2,At1×dl1=At2×dl2.

Metrics