Abstract

We demonstrate an optically controlled Kerr phase shifter using a room-temperature Rb85 vapor operating in a Raman gain scheme. Phase shifts from zero to π relative to an unshifted reference wave are observed, and gated operations are demonstrated. We further demonstrate the versatile digital manipulation of encoded signal light with an encoded phase-control light field using an unbalanced Mach–Zehnder interferometer. Generalizations of this scheme should be capable of full manipulation of a digitized signal field at high speed, opening the door to future applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

Errata

R. B. Li, L. Deng, E. W. Hagley, M. G. Payne, J. C. Bienfang, and Z. H. Levine, "Fast, optically controlled Kerr phase shifter for digital signal processing: erratum," Opt. Lett. 38, 5409-5409 (2013)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-38-24-5409

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, Phys. Today 50(7), 36 (1997).
    [CrossRef]
  2. H. Schmidt and A. Imamoglu, Opt. Lett. 21, 1936 (1996).
    [CrossRef]
  3. M. D. Lukin and A. Imamoglu, Phys. Rev. Lett. 84, 1419 (2000).
    [CrossRef]
  4. Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, Phys. Rev. Lett. 96, 043603 (2006).
    [CrossRef]
  5. H. S. Kang and Y. F. Zhu, Phys. Rev. Lett. 91, 093601 (2003).
    [CrossRef]
  6. L. Deng and M. G. Payne, Phys. Rev. Lett. 98, 253902 (2007).
    [CrossRef]
  7. This refers to the latency of the device (i.e., the overall device response time limited by the group velocity of the signal wave), not the light field modulation rate.
  8. M. G. Payne and L. Deng, Phys. Rev. A 64, 031802(R) (2001) and references therein.
    [CrossRef]
  9. G. X. Huang, C. Hang, and L. Deng, Phys. Rev. A 77, 011803(R) (2008).
  10. K. J. Jiang, L. Deng, and M. G. Payne, Phys. Rev. A 76, 033819 (2007).
    [CrossRef]
  11. C. C. Phillips, E. Paspalakis, G. B. Serapiglia, C. Sirtori, and K. L. Vodopyanov, Physica 7, 166 (2000).
    [CrossRef]
  12. L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, Eur. J. Phys. B 27, 89 (2002).
    [CrossRef]

2008 (1)

G. X. Huang, C. Hang, and L. Deng, Phys. Rev. A 77, 011803(R) (2008).

2007 (2)

K. J. Jiang, L. Deng, and M. G. Payne, Phys. Rev. A 76, 033819 (2007).
[CrossRef]

L. Deng and M. G. Payne, Phys. Rev. Lett. 98, 253902 (2007).
[CrossRef]

2006 (1)

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

2003 (1)

H. S. Kang and Y. F. Zhu, Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef]

2002 (1)

L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, Eur. J. Phys. B 27, 89 (2002).
[CrossRef]

2001 (1)

M. G. Payne and L. Deng, Phys. Rev. A 64, 031802(R) (2001) and references therein.
[CrossRef]

2000 (2)

C. C. Phillips, E. Paspalakis, G. B. Serapiglia, C. Sirtori, and K. L. Vodopyanov, Physica 7, 166 (2000).
[CrossRef]

M. D. Lukin and A. Imamoglu, Phys. Rev. Lett. 84, 1419 (2000).
[CrossRef]

1997 (1)

S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef]

1996 (1)

Bassani, F.

L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, Eur. J. Phys. B 27, 89 (2002).
[CrossRef]

Chen, Y. F.

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

Czajkowski, G.

L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, Eur. J. Phys. B 27, 89 (2002).
[CrossRef]

Davoudi, B.

L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, Eur. J. Phys. B 27, 89 (2002).
[CrossRef]

Deng, L.

G. X. Huang, C. Hang, and L. Deng, Phys. Rev. A 77, 011803(R) (2008).

K. J. Jiang, L. Deng, and M. G. Payne, Phys. Rev. A 76, 033819 (2007).
[CrossRef]

L. Deng and M. G. Payne, Phys. Rev. Lett. 98, 253902 (2007).
[CrossRef]

M. G. Payne and L. Deng, Phys. Rev. A 64, 031802(R) (2001) and references therein.
[CrossRef]

Hang, C.

G. X. Huang, C. Hang, and L. Deng, Phys. Rev. A 77, 011803(R) (2008).

Harris, S. E.

S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef]

Huang, G. X.

G. X. Huang, C. Hang, and L. Deng, Phys. Rev. A 77, 011803(R) (2008).

Imamoglu, A.

M. D. Lukin and A. Imamoglu, Phys. Rev. Lett. 84, 1419 (2000).
[CrossRef]

H. Schmidt and A. Imamoglu, Opt. Lett. 21, 1936 (1996).
[CrossRef]

Jiang, K. J.

K. J. Jiang, L. Deng, and M. G. Payne, Phys. Rev. A 76, 033819 (2007).
[CrossRef]

Kang, H. S.

H. S. Kang and Y. F. Zhu, Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef]

Lukin, M. D.

M. D. Lukin and A. Imamoglu, Phys. Rev. Lett. 84, 1419 (2000).
[CrossRef]

Paspalakis, E.

C. C. Phillips, E. Paspalakis, G. B. Serapiglia, C. Sirtori, and K. L. Vodopyanov, Physica 7, 166 (2000).
[CrossRef]

Payne, M. G.

K. J. Jiang, L. Deng, and M. G. Payne, Phys. Rev. A 76, 033819 (2007).
[CrossRef]

L. Deng and M. G. Payne, Phys. Rev. Lett. 98, 253902 (2007).
[CrossRef]

M. G. Payne and L. Deng, Phys. Rev. A 64, 031802(R) (2001) and references therein.
[CrossRef]

Phillips, C. C.

C. C. Phillips, E. Paspalakis, G. B. Serapiglia, C. Sirtori, and K. L. Vodopyanov, Physica 7, 166 (2000).
[CrossRef]

Schmidt, H.

Serapiglia, G. B.

C. C. Phillips, E. Paspalakis, G. B. Serapiglia, C. Sirtori, and K. L. Vodopyanov, Physica 7, 166 (2000).
[CrossRef]

Silvestri, L.

L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, Eur. J. Phys. B 27, 89 (2002).
[CrossRef]

Sirtori, C.

C. C. Phillips, E. Paspalakis, G. B. Serapiglia, C. Sirtori, and K. L. Vodopyanov, Physica 7, 166 (2000).
[CrossRef]

Vodopyanov, K. L.

C. C. Phillips, E. Paspalakis, G. B. Serapiglia, C. Sirtori, and K. L. Vodopyanov, Physica 7, 166 (2000).
[CrossRef]

Wang, C. Y.

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

Wang, S. H.

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

Yu, I. A.

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

Zhu, Y. F.

H. S. Kang and Y. F. Zhu, Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef]

Eur. J. Phys. B (1)

L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, Eur. J. Phys. B 27, 89 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (3)

M. G. Payne and L. Deng, Phys. Rev. A 64, 031802(R) (2001) and references therein.
[CrossRef]

G. X. Huang, C. Hang, and L. Deng, Phys. Rev. A 77, 011803(R) (2008).

K. J. Jiang, L. Deng, and M. G. Payne, Phys. Rev. A 76, 033819 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

M. D. Lukin and A. Imamoglu, Phys. Rev. Lett. 84, 1419 (2000).
[CrossRef]

Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

H. S. Kang and Y. F. Zhu, Phys. Rev. Lett. 91, 093601 (2003).
[CrossRef]

L. Deng and M. G. Payne, Phys. Rev. Lett. 98, 253902 (2007).
[CrossRef]

Phys. Today (1)

S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef]

Physica (1)

C. C. Phillips, E. Paspalakis, G. B. Serapiglia, C. Sirtori, and K. L. Vodopyanov, Physica 7, 166 (2000).
[CrossRef]

Other (1)

This refers to the latency of the device (i.e., the overall device response time limited by the group velocity of the signal wave), not the light field modulation rate.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental setup, (b) energy diagram and laser couplings, and (c) typical signal wave propagation characteristics. The Rb85 vapor cell is shielded from the ambient magnetic field and is also actively temperature controlled. A weak (10 μT) axial magnetic field generated by the solenoid provides a quantization axis for the atoms. Typically, the “superluminal” propagation of a signal field when only the pump and signal fields are present in the medium yields a “lead time” (red curve, from detector D1) of a few tens to a couple of hundred nanoseconds for a signal light pulse length of about 11 μs when compared to an unshifted reference wave (black curve, from detector D2).

Fig. 2.
Fig. 2.

Mach–Zehnder interferogram showing ψ Kerr nonlinear phase shifts under three different signal light intensities. The dashed curve is the reference. The phase-control light is held fixed in all three cases, and the piezo-actuator control voltage is scanned to capture more than one period and the data fit using a sine function. Upper, middle, and lower solid curves were obtained with signal intensities of 50, 25, and 10 μW, respectively, indicating that the Kerr phase shift is insensitive to the intensity change of the signal laser.

Fig. 3.
Fig. 3.

Plot of Kerr nonlinear phase shift of Ep as a function of the power of the phase-control field Eph. Parameters used are the same as in Fig. 2.

Fig. 4.
Fig. 4.

Demonstration of Kerr-phase-gate-based digital signal control and manipulation. The signal field is encoded with three groups of a fixed digital waveform pattern of 010101010 (top trace). By encoding different digital waveforms to the phase-control laser (middle trace), different output digital waveforms are obtained (bottom trace). In between the groups an additional optical-pumping step was taken due to the two-photon relaxation time.

Metrics