Abstract

A photonic scheme to generate a phase-coded microwave signal with tunable carrier frequency based on a simple single-trip and two-pass structure is proposed. Facilitated by the fiber Bragg grating and phase modulator along the trip, both frequency doubling and signal phase coding could be achieved simultaneously. Phase-coded microwave signals at 20 and 22 GHz are experimentally generated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds, IEEE Trans. Microwave Theor. Tech. 50, 877 (2002).
    [CrossRef]
  2. S. Roy, J.-R. Foerster, V.-S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
    [CrossRef]
  3. M.-I. Skolnik, Introduction to Radar (McGraw-Hill, 1962).
  4. A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, IEEE Photon. Technol. Lett. 17, 660 (2005).
    [CrossRef]
  5. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, J. Lightwave Technol. 30, 1638 (2012).
    [CrossRef]
  6. Y.-T. Dai and J.-P. Yao, Opt. Lett. 32, 3486 (2007).
    [CrossRef]
  7. P. Xiang, X.-P. Zheng, H.-Y. Zhang, Y. Q. Li, and Y.-F. Chen, Opt. Express 21, 631 (2013).
    [CrossRef]
  8. M. Li, Z. Li, and J.-P. Yao, IEEE Photon. Technol. Lett. 24, 2001 (2012).
    [CrossRef]
  9. J. Ye, L.-S. Yan, Z.-Y. Chen, B. Luo, X.-H. Zou, A.-L. Yi, and S. Yao, IEEE Photon. Technol. Lett. 24, 1527 (2012).
    [CrossRef]
  10. H. Chi and J.-P. Yao, IEEE Photon. Technol. Lett. 19, 768 (2007).
    [CrossRef]
  11. J. D. McKinney, D. E. Leaird, and A. M. Weiner, Opt. Lett. 27, 1345 (2002).
    [CrossRef]
  12. J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
    [CrossRef]
  13. Z. Li, W.-Z. Li, H. Chi, X.-M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
    [CrossRef]

2013 (1)

2012 (3)

M. Li, Z. Li, and J.-P. Yao, IEEE Photon. Technol. Lett. 24, 2001 (2012).
[CrossRef]

J. Ye, L.-S. Yan, Z.-Y. Chen, B. Luo, X.-H. Zou, A.-L. Yi, and S. Yao, IEEE Photon. Technol. Lett. 24, 1527 (2012).
[CrossRef]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, J. Lightwave Technol. 30, 1638 (2012).
[CrossRef]

2011 (1)

Z. Li, W.-Z. Li, H. Chi, X.-M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

2007 (2)

Y.-T. Dai and J.-P. Yao, Opt. Lett. 32, 3486 (2007).
[CrossRef]

H. Chi and J.-P. Yao, IEEE Photon. Technol. Lett. 19, 768 (2007).
[CrossRef]

2005 (1)

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, IEEE Photon. Technol. Lett. 17, 660 (2005).
[CrossRef]

2004 (1)

S. Roy, J.-R. Foerster, V.-S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
[CrossRef]

2003 (1)

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

2002 (2)

A. J. Seeds, IEEE Trans. Microwave Theor. Tech. 50, 877 (2002).
[CrossRef]

J. D. McKinney, D. E. Leaird, and A. M. Weiner, Opt. Lett. 27, 1345 (2002).
[CrossRef]

Bogoni, A.

Chen, Y.-F.

Chen, Z.-Y.

J. Ye, L.-S. Yan, Z.-Y. Chen, B. Luo, X.-H. Zou, A.-L. Yi, and S. Yao, IEEE Photon. Technol. Lett. 24, 1527 (2012).
[CrossRef]

Chi, H.

Z. Li, W.-Z. Li, H. Chi, X.-M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

H. Chi and J.-P. Yao, IEEE Photon. Technol. Lett. 19, 768 (2007).
[CrossRef]

Chou, J.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Dai, Y.-T.

Foerster, J.-R.

S. Roy, J.-R. Foerster, V.-S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
[CrossRef]

Ghelfi, P.

Han, Y.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Horowitz, M.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, IEEE Photon. Technol. Lett. 17, 660 (2005).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Laghezza, F.

Leaird, D. E.

Leeper, D. G.

S. Roy, J.-R. Foerster, V.-S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
[CrossRef]

Levinson, O.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, IEEE Photon. Technol. Lett. 17, 660 (2005).
[CrossRef]

Li, M.

M. Li, Z. Li, and J.-P. Yao, IEEE Photon. Technol. Lett. 24, 2001 (2012).
[CrossRef]

Li, W.-Z.

Z. Li, W.-Z. Li, H. Chi, X.-M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Li, Y. Q.

Li, Z.

M. Li, Z. Li, and J.-P. Yao, IEEE Photon. Technol. Lett. 24, 2001 (2012).
[CrossRef]

Z. Li, W.-Z. Li, H. Chi, X.-M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Luo, B.

J. Ye, L.-S. Yan, Z.-Y. Chen, B. Luo, X.-H. Zou, A.-L. Yi, and S. Yao, IEEE Photon. Technol. Lett. 24, 1527 (2012).
[CrossRef]

McKinney, J. D.

Roy, S.

S. Roy, J.-R. Foerster, V.-S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
[CrossRef]

Scotti, F.

Seeds, A. J.

A. J. Seeds, IEEE Trans. Microwave Theor. Tech. 50, 877 (2002).
[CrossRef]

Skolnik, M.-I.

M.-I. Skolnik, Introduction to Radar (McGraw-Hill, 1962).

Somayazulu, V.-S.

S. Roy, J.-R. Foerster, V.-S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
[CrossRef]

Stepanov, S.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, IEEE Photon. Technol. Lett. 17, 660 (2005).
[CrossRef]

Weiner, A. M.

Xiang, P.

Yan, L.-S.

J. Ye, L.-S. Yan, Z.-Y. Chen, B. Luo, X.-H. Zou, A.-L. Yi, and S. Yao, IEEE Photon. Technol. Lett. 24, 1527 (2012).
[CrossRef]

Yao, J. P.

Z. Li, W.-Z. Li, H. Chi, X.-M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Yao, J.-P.

M. Li, Z. Li, and J.-P. Yao, IEEE Photon. Technol. Lett. 24, 2001 (2012).
[CrossRef]

Y.-T. Dai and J.-P. Yao, Opt. Lett. 32, 3486 (2007).
[CrossRef]

H. Chi and J.-P. Yao, IEEE Photon. Technol. Lett. 19, 768 (2007).
[CrossRef]

Yao, S.

J. Ye, L.-S. Yan, Z.-Y. Chen, B. Luo, X.-H. Zou, A.-L. Yi, and S. Yao, IEEE Photon. Technol. Lett. 24, 1527 (2012).
[CrossRef]

Ye, J.

J. Ye, L.-S. Yan, Z.-Y. Chen, B. Luo, X.-H. Zou, A.-L. Yi, and S. Yao, IEEE Photon. Technol. Lett. 24, 1527 (2012).
[CrossRef]

Yi, A.-L.

J. Ye, L.-S. Yan, Z.-Y. Chen, B. Luo, X.-H. Zou, A.-L. Yi, and S. Yao, IEEE Photon. Technol. Lett. 24, 1527 (2012).
[CrossRef]

Zeitouny, A.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, IEEE Photon. Technol. Lett. 17, 660 (2005).
[CrossRef]

Zhang, H.-Y.

Zhang, X.-M.

Z. Li, W.-Z. Li, H. Chi, X.-M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Zheng, X.-P.

Zou, X.-H.

J. Ye, L.-S. Yan, Z.-Y. Chen, B. Luo, X.-H. Zou, A.-L. Yi, and S. Yao, IEEE Photon. Technol. Lett. 24, 1527 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, IEEE Photon. Technol. Lett. 17, 660 (2005).
[CrossRef]

M. Li, Z. Li, and J.-P. Yao, IEEE Photon. Technol. Lett. 24, 2001 (2012).
[CrossRef]

J. Ye, L.-S. Yan, Z.-Y. Chen, B. Luo, X.-H. Zou, A.-L. Yi, and S. Yao, IEEE Photon. Technol. Lett. 24, 1527 (2012).
[CrossRef]

H. Chi and J.-P. Yao, IEEE Photon. Technol. Lett. 19, 768 (2007).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Z. Li, W.-Z. Li, H. Chi, X.-M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

A. J. Seeds, IEEE Trans. Microwave Theor. Tech. 50, 877 (2002).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (2)

Proc. IEEE (1)

S. Roy, J.-R. Foerster, V.-S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
[CrossRef]

Other (1)

M.-I. Skolnik, Introduction to Radar (McGraw-Hill, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Conceptual diagram of proposed phase-coded microwave signal generation. TLS, tunable laser source with the central frequency of A; MZM, Mach–Zehnder modulator; FBG, fiber Bragg grating; PM, phase modulator; PD, photodetector; M, inline mirror; DSB-CS, double-sideband carrier suppression. Insets show the tunability of carrier frequency (2fc). The solid line in black shows the transmitted spectrum of the FBG. Sn,(n=1,2n): the ±1st-order sidebands of DSB-CS at different driving frequencies (fc) at point D from the left view.

Fig. 2.
Fig. 2.

Measured optical spectrum of (a) generated ±1st-order sidebands (dashed line in blue is the transmitted spectrum of the FBG). (b) 1st-order sideband at the input of the PM. (c) +1st-order sideband at the output of the optical circulator. (d) Recombined ±1st-order sidebands at the input of the PD.

Fig. 3.
Fig. 3.

Measured waveform of (a) original 22 GHz signal without phase coding, (b) measured waveform and (c) instantaneous phase shift, and (d) simulated result of 22 GHz phase-coded signal using s(t). (e) Measured waveform and (f) instantaneous phase shift. (g) Simulated results of 22 GHz phase-coded signal using s(t).

Fig. 4.
Fig. 4.

Measured waveform of (a) original 20 GHz signal, (b) measured waveform and (c) instantaneous phase shift, and (d) simulated result of generated 20 GHz phase-coded signal with a fixed pattern of “110110”.

Fig. 5.
Fig. 5.

Measured phase shift of generated microwave signal versus the voltage of the PM-modulation signal (νs). Insets: waveforms for (a) 90° and (b) 180° instantaneous phase shift.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E+1(t)=exp[j(ω0ωc)t],
E1(t)=exp{j[(ω0+ωc)t+π(νsνπ)s(t)],
I(t)=R·cos[2ωct+π(vsvπ)·s(t)].

Metrics