Abstract

Experiments for cell identification are presented using a high-precision cell phase measurement system that does not require any phase unwrapping. This system is based on a Mach–Zehnder interferometer using a phase-locking technique, and it measures the change in optical path length while the sample is scanned across the optical axis. The spatial resolution is estimated to be less than 1.1 μm. The sensitivity of optical path length difference is estimated to be less than 2 nm. Using experiments, we investigate the potential of this approach for cancer cell identification. In our preliminary experiments, cancer cells were distinguished from normal cells through comparison of optical path length differences.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution

Woo June Choi, Do In Jeon, Sang-Gun Ahn, Jung-Hoon Yoon, Sungho Kim, and Byeong Ha Lee
Opt. Express 18(22) 23285-23295 (2010)

Study of dynamic process of acetic acid induced-whitening in epithelial tissues at cellular level

Tao T. Wu, Jianan Y. Qu, Tak Hong Cheung, So Fan Yim, and Yick Fu Wong
Opt. Express 13(13) 4963-4973 (2005)

Highly sensitive detection of cancer cells using femtosecond dual-wavelength near-IR two-photon imaging

Jean R. Starkey, Nikolay S. Makarov, Mikhail Drobizhev, and Aleksander Rebane
Biomed. Opt. Express 3(7) 1534-1547 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription