Abstract

A scheme with usage of metallic nonlinearity, especially in generating the surface plasmon polariton (SPP) time-reversal wave (TRW), is investigated. It is composed of a metal film and an attached photonic crystal, in which both a far-field-excitable tunneling mode and an SPP guided mode could exist. Two modes are degenerated, deeply penetrated into metal, well overlapped, and localized. Therefore, the tunneling mode acts as the pumping field, while the SPP mode acts as the signal field. Because of the large metallic nonlinear susceptibility, the TRW efficiency could increase thousand times. This scheme can be widely used as a high-efficiency platform for other nonlinear devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shen, The Principles of Nonlinear Optics (Wiley, 2002).
  2. H. Lu, C. Xue, H. Jiang, and H. Chen, J. Opt. Soc. Am. B 28, 856 (2011).
    [CrossRef]
  3. G. He, Prog. Quantum Electron. 26, 131 (2002).
    [CrossRef]
  4. A. Yariv and D. Pepper, Opt. Lett. 1, 16 (1977).
    [CrossRef]
  5. A. Polman, Science 322, 868 (2008).
    [CrossRef]
  6. G. Du, H. Jiang, Z. Wang, and H. Chen, Opt. Lett. 34, 578 (2009).
    [CrossRef]
  7. M. Scalora, M. Bloemer, A. Pethel, J. Dowling, C. Bowden, and A. Manka, J. Appl. Phys. 83, 2377 (1998).
    [CrossRef]
  8. D. Ricard, P. Roussignol, and C. Flytzanis, Opt. Lett. 10, 511 (1985).
    [CrossRef]
  9. E. Kretschmann and H. Raether, Z. Naturforsch. A 23, 2135 (1968).
  10. W. Li, Z. Liu, X. Zhang, and X. Jiang, Appl. Phys. Lett. 100, 161108 (2012).
    [CrossRef]
  11. Y. Kuznetsov and D. Sementsov, Opt. Spectrosc. 97, 614 (2004).
    [CrossRef]

2012

W. Li, Z. Liu, X. Zhang, and X. Jiang, Appl. Phys. Lett. 100, 161108 (2012).
[CrossRef]

2011

2009

2008

A. Polman, Science 322, 868 (2008).
[CrossRef]

2004

Y. Kuznetsov and D. Sementsov, Opt. Spectrosc. 97, 614 (2004).
[CrossRef]

2002

G. He, Prog. Quantum Electron. 26, 131 (2002).
[CrossRef]

1998

M. Scalora, M. Bloemer, A. Pethel, J. Dowling, C. Bowden, and A. Manka, J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

1985

1977

1968

E. Kretschmann and H. Raether, Z. Naturforsch. A 23, 2135 (1968).

Bloemer, M.

M. Scalora, M. Bloemer, A. Pethel, J. Dowling, C. Bowden, and A. Manka, J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

Bowden, C.

M. Scalora, M. Bloemer, A. Pethel, J. Dowling, C. Bowden, and A. Manka, J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

Chen, H.

Dowling, J.

M. Scalora, M. Bloemer, A. Pethel, J. Dowling, C. Bowden, and A. Manka, J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

Du, G.

Flytzanis, C.

He, G.

G. He, Prog. Quantum Electron. 26, 131 (2002).
[CrossRef]

Jiang, H.

Jiang, X.

W. Li, Z. Liu, X. Zhang, and X. Jiang, Appl. Phys. Lett. 100, 161108 (2012).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, Z. Naturforsch. A 23, 2135 (1968).

Kuznetsov, Y.

Y. Kuznetsov and D. Sementsov, Opt. Spectrosc. 97, 614 (2004).
[CrossRef]

Li, W.

W. Li, Z. Liu, X. Zhang, and X. Jiang, Appl. Phys. Lett. 100, 161108 (2012).
[CrossRef]

Liu, Z.

W. Li, Z. Liu, X. Zhang, and X. Jiang, Appl. Phys. Lett. 100, 161108 (2012).
[CrossRef]

Lu, H.

Manka, A.

M. Scalora, M. Bloemer, A. Pethel, J. Dowling, C. Bowden, and A. Manka, J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

Pepper, D.

Pethel, A.

M. Scalora, M. Bloemer, A. Pethel, J. Dowling, C. Bowden, and A. Manka, J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

Polman, A.

A. Polman, Science 322, 868 (2008).
[CrossRef]

Raether, H.

E. Kretschmann and H. Raether, Z. Naturforsch. A 23, 2135 (1968).

Ricard, D.

Roussignol, P.

Scalora, M.

M. Scalora, M. Bloemer, A. Pethel, J. Dowling, C. Bowden, and A. Manka, J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

Sementsov, D.

Y. Kuznetsov and D. Sementsov, Opt. Spectrosc. 97, 614 (2004).
[CrossRef]

Shen, Y.

Y. Shen, The Principles of Nonlinear Optics (Wiley, 2002).

Wang, Z.

Xue, C.

Yariv, A.

Zhang, X.

W. Li, Z. Liu, X. Zhang, and X. Jiang, Appl. Phys. Lett. 100, 161108 (2012).
[CrossRef]

Appl. Phys. Lett.

W. Li, Z. Liu, X. Zhang, and X. Jiang, Appl. Phys. Lett. 100, 161108 (2012).
[CrossRef]

J. Appl. Phys.

M. Scalora, M. Bloemer, A. Pethel, J. Dowling, C. Bowden, and A. Manka, J. Appl. Phys. 83, 2377 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Spectrosc.

Y. Kuznetsov and D. Sementsov, Opt. Spectrosc. 97, 614 (2004).
[CrossRef]

Prog. Quantum Electron.

G. He, Prog. Quantum Electron. 26, 131 (2002).
[CrossRef]

Science

A. Polman, Science 322, 868 (2008).
[CrossRef]

Z. Naturforsch. A

E. Kretschmann and H. Raether, Z. Naturforsch. A 23, 2135 (1968).

Other

Y. Shen, The Principles of Nonlinear Optics (Wiley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Our scheme. (b) Dispersive curves of tunneling mode and SPP for p polarization (solid curve); the solid line represents the light line in the different materials. Above the Si line, the red (dark) and yellow (under-tint) regions indicate the passband and the bandgap, respectively.

Fig. 2.
Fig. 2.

Patterns of the normally incident field for (a) single metal film and (b) metal-1DPC structure at the frequency of the tunneling mode. (c) Total field distribution in our structure when the SPP mode and the tunneling mode are excited at the same time. (d) Field distributions of tunneling mode, SPP, total field, and TRW at ωspp=ωtun=0.302ωp, and kspp=0.783kp.

Fig. 3.
Fig. 3.

(a) Pulse of input SPP signal. (b) Generated SPP TRW pulse. (c) Intensity of the excited TRW SPPs ITRW as a function of the pump intensity Itun with the fixed signal intensity Ispp=50MW/cm2 when the metal film is coated on the TiO2 substrate (lower two lines) and the PC substrate (upper two lines), respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[××ωs2c2ε(z)]Es=ωs2μ0Ps,
χeff(3)=χ(3)Etun2EsppdxEtun2dx(Espp2dx)1/2.

Metrics