Abstract

We present experimental demonstration and modeling of the optimization of a phase-sensitive optical parametric amplifier by tuning the relative position between the pump and signal beam waists along the propagation direction. At the optimum position, the pump beam focuses after the signal beam, and this departure from colocated waists increases with increasing pump power. Such optimization leads to more than 3 dB improvement in the measured deamplification response of the amplifier.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Kim and P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
    [CrossRef]
  2. S. K. Choi, R. D. Li, C. H. Kim, and P. Kumar, J. Opt. Soc. Am. B 14, 1564 (1997).
    [CrossRef]
  3. M. Vasilyev, M. Annamalai, N. Stelmakh, and P. Kumar, J. Mod. Opt. 57, 1908 (2010).
    [CrossRef]
  4. R. D. Li, S. K. Choi, and P. Kumar, Quantum Semiclass. Opt. 7, 705 (1995).
    [CrossRef]
  5. M. Annamalai, N. Stelmakh, M. Vasilyev, and P. Kumar, Opt. Express 19, 26710 (2011).
    [CrossRef]
  6. K. G. Köprülü and O. Aytür, Phys. Rev. A 60, 4122 (1999).
    [CrossRef]

2011 (1)

2010 (1)

M. Vasilyev, M. Annamalai, N. Stelmakh, and P. Kumar, J. Mod. Opt. 57, 1908 (2010).
[CrossRef]

1999 (1)

K. G. Köprülü and O. Aytür, Phys. Rev. A 60, 4122 (1999).
[CrossRef]

1997 (1)

1995 (1)

R. D. Li, S. K. Choi, and P. Kumar, Quantum Semiclass. Opt. 7, 705 (1995).
[CrossRef]

1994 (1)

C. H. Kim and P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
[CrossRef]

Annamalai, M.

M. Annamalai, N. Stelmakh, M. Vasilyev, and P. Kumar, Opt. Express 19, 26710 (2011).
[CrossRef]

M. Vasilyev, M. Annamalai, N. Stelmakh, and P. Kumar, J. Mod. Opt. 57, 1908 (2010).
[CrossRef]

Aytür, O.

K. G. Köprülü and O. Aytür, Phys. Rev. A 60, 4122 (1999).
[CrossRef]

Choi, S. K.

S. K. Choi, R. D. Li, C. H. Kim, and P. Kumar, J. Opt. Soc. Am. B 14, 1564 (1997).
[CrossRef]

R. D. Li, S. K. Choi, and P. Kumar, Quantum Semiclass. Opt. 7, 705 (1995).
[CrossRef]

Kim, C. H.

Köprülü, K. G.

K. G. Köprülü and O. Aytür, Phys. Rev. A 60, 4122 (1999).
[CrossRef]

Kumar, P.

M. Annamalai, N. Stelmakh, M. Vasilyev, and P. Kumar, Opt. Express 19, 26710 (2011).
[CrossRef]

M. Vasilyev, M. Annamalai, N. Stelmakh, and P. Kumar, J. Mod. Opt. 57, 1908 (2010).
[CrossRef]

S. K. Choi, R. D. Li, C. H. Kim, and P. Kumar, J. Opt. Soc. Am. B 14, 1564 (1997).
[CrossRef]

R. D. Li, S. K. Choi, and P. Kumar, Quantum Semiclass. Opt. 7, 705 (1995).
[CrossRef]

C. H. Kim and P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
[CrossRef]

Li, R. D.

S. K. Choi, R. D. Li, C. H. Kim, and P. Kumar, J. Opt. Soc. Am. B 14, 1564 (1997).
[CrossRef]

R. D. Li, S. K. Choi, and P. Kumar, Quantum Semiclass. Opt. 7, 705 (1995).
[CrossRef]

Stelmakh, N.

M. Annamalai, N. Stelmakh, M. Vasilyev, and P. Kumar, Opt. Express 19, 26710 (2011).
[CrossRef]

M. Vasilyev, M. Annamalai, N. Stelmakh, and P. Kumar, J. Mod. Opt. 57, 1908 (2010).
[CrossRef]

Vasilyev, M.

M. Annamalai, N. Stelmakh, M. Vasilyev, and P. Kumar, Opt. Express 19, 26710 (2011).
[CrossRef]

M. Vasilyev, M. Annamalai, N. Stelmakh, and P. Kumar, J. Mod. Opt. 57, 1908 (2010).
[CrossRef]

J. Mod. Opt. (1)

M. Vasilyev, M. Annamalai, N. Stelmakh, and P. Kumar, J. Mod. Opt. 57, 1908 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Phys. Rev. A (1)

K. G. Köprülü and O. Aytür, Phys. Rev. A 60, 4122 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

C. H. Kim and P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
[CrossRef]

Quantum Semiclass. Opt. (1)

R. D. Li, S. K. Choi, and P. Kumar, Quantum Semiclass. Opt. 7, 705 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental configuration of the OPA. PZT, piezoelectric transducer; DM, dichroic mirror; λ/2, half-wave plates.

Fig. 2.
Fig. 2.

Gain as a function of pump power for different z offsets. Red circles show experimental results for z offset of +5.5mm (signal waist is downstream from the pump waist). Black squares are data for z offset=0mm and blue triangles are data for z offset=3.7mm. Results from the model: dotted lines are obtained by scanning the signal waist, dashed lines by scanning the pump waist, and solid lines by scanning the pump waist while including phase fluctuations with Δθ=0.65°. The deff parameter is used to scale the horizontal axis of the modeled gain for best fit and is found to be 6.3pm/V. Inset shows degain as a function of gain for z offset=3.7mm. Straight line has 11 slope.

Fig. 3.
Fig. 3.

Degain dependence on z offset for pump power of 165 W (red squares), 330 W (black triangles), and 820 W (blue circles). Solid lines are results of simulations obtained by scanning the pump waist. Broken lines are similar to the solid lines but with inclusion of Δθ=0.65°. Inset shows our sign convention of the z offset along the propagation direction. Red broken line is the pump and black thin line is the signal. Negative offset is defined when the pump waist is located after the signal waist.

Fig. 4.
Fig. 4.

Results from BPM-FFT modeling for the evolution of the signal beam’s (a) half-width and (b) curvature radius in the absence (lines) and presence (symbols) of the pump with waist ap=26μm and power P0=450W, corresponding to a PSA gain of 13.8dB. Red squares and thin line are for a fundamental Gaussian input with 2.8mm offset; blue circles and thick line are for same input, but with 0 mm offset; green broken line is same input but with +2.8mm offset; and black triangles are the eigenmode 0.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dE(ρ¯,z)dz+12ik2E(ρ¯,z)=KE*(ρ¯,z)EP(ρ¯,z)
E(ρ¯,zn+1)=E(ρ¯,zn+h1)cosh[κ(ρ¯,zn+h1)h]+ie[iφP(ρ¯,zn+h1)]sinh[κ(ρ¯,zn+h1)h]E*(ρ¯,zn+h1),
G(Δθ)=Gcos2Δθ+G1sin2Δθ.

Metrics