Abstract

The excitation wavelength for all-optical modulation of a 10.6 μm mid-infrared (MIR) quantum cascade laser (QCL) was varied in order to obtain maximum modulation depth. Both amplitude and wavelength modulation experiments were conducted at 820 nm and 1550 nm excitation respectively, whereby the latter matches the interband transition in the QCL active region. Experimental results show that for continuous-wave mode-operated QCL, the efficiency of free carrier generation is doubled under 1550 nm excitation compared with 820 nm excitation, resulting in an increase of the amplitude modulation index from 19% to 36%. At the same time, the maximum wavelength shift is more than doubled from 1.05 nm to 2.80 nm. Furthermore, for the first time to our knowledge, we demonstrated the optical switching of a QCL operated in pulse mode by simple variation of the excitation wavelength.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. B 85, 223 (2006).
    [CrossRef]
  2. P. Corrigan, R. Martini, E. A. Whittaker, and C. Bethea, Opt. Express 17, 4355 (2009).
    [CrossRef]
  3. R. Martini and E. A. Whittaker, J. Opt. Fiber Commun. Rep. 2, 279 (2005).
    [CrossRef]
  4. G. Chen, C. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 95, 101104 (2009).
    [CrossRef]
  5. G. Chen, R. Martini, S. W. Park, C. Bethea, I. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 97, 011102 (2010).
    [CrossRef]
  6. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Rep. Prog. Phys. 64, 1533 (2001).
    [CrossRef]
  7. M. Elsässer, S. G. Hense, and M. Wegener, Appl. Phys. Lett. 70, 853 (1997).
    [CrossRef]
  8. G. Chen, T. Yang, C. Peng, S. W. Park, and R. Martini, “Numerical study of the electron temperature effect on quantum cascade laser output characteristics,” IEEE J. Quantum Electron. (to be published).
  9. C. H. Henry, R. A. Logan, and K. A. Bertness, J. Appl. Phys. 52, 4457 (1981).
    [CrossRef]

2010 (1)

G. Chen, R. Martini, S. W. Park, C. Bethea, I. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 97, 011102 (2010).
[CrossRef]

2009 (2)

P. Corrigan, R. Martini, E. A. Whittaker, and C. Bethea, Opt. Express 17, 4355 (2009).
[CrossRef]

G. Chen, C. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 95, 101104 (2009).
[CrossRef]

2006 (1)

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. B 85, 223 (2006).
[CrossRef]

2005 (1)

R. Martini and E. A. Whittaker, J. Opt. Fiber Commun. Rep. 2, 279 (2005).
[CrossRef]

2001 (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Rep. Prog. Phys. 64, 1533 (2001).
[CrossRef]

1997 (1)

M. Elsässer, S. G. Hense, and M. Wegener, Appl. Phys. Lett. 70, 853 (1997).
[CrossRef]

1981 (1)

C. H. Henry, R. A. Logan, and K. A. Bertness, J. Appl. Phys. 52, 4457 (1981).
[CrossRef]

Bartalini, S.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. B 85, 223 (2006).
[CrossRef]

Bertness, K. A.

C. H. Henry, R. A. Logan, and K. A. Bertness, J. Appl. Phys. 52, 4457 (1981).
[CrossRef]

Bethea, C.

G. Chen, R. Martini, S. W. Park, C. Bethea, I. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 97, 011102 (2010).
[CrossRef]

P. Corrigan, R. Martini, E. A. Whittaker, and C. Bethea, Opt. Express 17, 4355 (2009).
[CrossRef]

G. Chen, C. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 95, 101104 (2009).
[CrossRef]

Borri, S.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. B 85, 223 (2006).
[CrossRef]

Capasso, F.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. B 85, 223 (2006).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Rep. Prog. Phys. 64, 1533 (2001).
[CrossRef]

Chen, G.

G. Chen, R. Martini, S. W. Park, C. Bethea, I. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 97, 011102 (2010).
[CrossRef]

G. Chen, C. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 95, 101104 (2009).
[CrossRef]

G. Chen, T. Yang, C. Peng, S. W. Park, and R. Martini, “Numerical study of the electron temperature effect on quantum cascade laser output characteristics,” IEEE J. Quantum Electron. (to be published).

Chen, I. A.

G. Chen, R. Martini, S. W. Park, C. Bethea, I. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 97, 011102 (2010).
[CrossRef]

Cho, A. Y.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. B 85, 223 (2006).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Rep. Prog. Phys. 64, 1533 (2001).
[CrossRef]

Corrigan, P.

De Natale, P.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. B 85, 223 (2006).
[CrossRef]

Dudek, R.

G. Chen, R. Martini, S. W. Park, C. Bethea, I. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 97, 011102 (2010).
[CrossRef]

G. Chen, C. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 95, 101104 (2009).
[CrossRef]

Elsässer, M.

M. Elsässer, S. G. Hense, and M. Wegener, Appl. Phys. Lett. 70, 853 (1997).
[CrossRef]

Gmachl, C.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. B 85, 223 (2006).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Rep. Prog. Phys. 64, 1533 (2001).
[CrossRef]

Grant, P. D.

G. Chen, R. Martini, S. W. Park, C. Bethea, I. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 97, 011102 (2010).
[CrossRef]

G. Chen, C. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 95, 101104 (2009).
[CrossRef]

Henry, C. H.

C. H. Henry, R. A. Logan, and K. A. Bertness, J. Appl. Phys. 52, 4457 (1981).
[CrossRef]

Hense, S. G.

M. Elsässer, S. G. Hense, and M. Wegener, Appl. Phys. Lett. 70, 853 (1997).
[CrossRef]

Inguscio, M.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. B 85, 223 (2006).
[CrossRef]

Liu, H. C.

G. Chen, R. Martini, S. W. Park, C. Bethea, I. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 97, 011102 (2010).
[CrossRef]

G. Chen, C. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 95, 101104 (2009).
[CrossRef]

Logan, R. A.

C. H. Henry, R. A. Logan, and K. A. Bertness, J. Appl. Phys. 52, 4457 (1981).
[CrossRef]

Martini, R.

G. Chen, R. Martini, S. W. Park, C. Bethea, I. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 97, 011102 (2010).
[CrossRef]

P. Corrigan, R. Martini, E. A. Whittaker, and C. Bethea, Opt. Express 17, 4355 (2009).
[CrossRef]

G. Chen, C. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 95, 101104 (2009).
[CrossRef]

R. Martini and E. A. Whittaker, J. Opt. Fiber Commun. Rep. 2, 279 (2005).
[CrossRef]

G. Chen, T. Yang, C. Peng, S. W. Park, and R. Martini, “Numerical study of the electron temperature effect on quantum cascade laser output characteristics,” IEEE J. Quantum Electron. (to be published).

Park, S. W.

G. Chen, R. Martini, S. W. Park, C. Bethea, I. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 97, 011102 (2010).
[CrossRef]

G. Chen, T. Yang, C. Peng, S. W. Park, and R. Martini, “Numerical study of the electron temperature effect on quantum cascade laser output characteristics,” IEEE J. Quantum Electron. (to be published).

Peng, C.

G. Chen, T. Yang, C. Peng, S. W. Park, and R. Martini, “Numerical study of the electron temperature effect on quantum cascade laser output characteristics,” IEEE J. Quantum Electron. (to be published).

Sivco, D. L.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. B 85, 223 (2006).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Rep. Prog. Phys. 64, 1533 (2001).
[CrossRef]

Wegener, M.

M. Elsässer, S. G. Hense, and M. Wegener, Appl. Phys. Lett. 70, 853 (1997).
[CrossRef]

Whittaker, E. A.

P. Corrigan, R. Martini, E. A. Whittaker, and C. Bethea, Opt. Express 17, 4355 (2009).
[CrossRef]

R. Martini and E. A. Whittaker, J. Opt. Fiber Commun. Rep. 2, 279 (2005).
[CrossRef]

Yang, T.

G. Chen, T. Yang, C. Peng, S. W. Park, and R. Martini, “Numerical study of the electron temperature effect on quantum cascade laser output characteristics,” IEEE J. Quantum Electron. (to be published).

Appl. Phys. B (1)

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. B 85, 223 (2006).
[CrossRef]

Appl. Phys. Lett (2)

G. Chen, C. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 95, 101104 (2009).
[CrossRef]

G. Chen, R. Martini, S. W. Park, C. Bethea, I. A. Chen, P. D. Grant, R. Dudek, and H. C. Liu, Appl. Phys. Lett 97, 011102 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

M. Elsässer, S. G. Hense, and M. Wegener, Appl. Phys. Lett. 70, 853 (1997).
[CrossRef]

J. Appl. Phys. (1)

C. H. Henry, R. A. Logan, and K. A. Bertness, J. Appl. Phys. 52, 4457 (1981).
[CrossRef]

J. Opt. Fiber Commun. Rep. (1)

R. Martini and E. A. Whittaker, J. Opt. Fiber Commun. Rep. 2, 279 (2005).
[CrossRef]

Opt. Express (1)

Rep. Prog. Phys. (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Rep. Prog. Phys. 64, 1533 (2001).
[CrossRef]

Other (1)

G. Chen, T. Yang, C. Peng, S. W. Park, and R. Martini, “Numerical study of the electron temperature effect on quantum cascade laser output characteristics,” IEEE J. Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

QCL PL spectrum (with and without DC bias) obtained by front facet illumination with an 820 nm Ti:Sapphire laser.

Fig. 2.
Fig. 2.

(a) QCL optical pulse under 1550 nm NIR and 820 nm NIR excitation, respectively. (b) Relationship between the QCL pulse intensity and NIR spot position on QCL front facet. (c) QCL optical pulse power versus the NIR injection power. (d) The QCL I–L curve with and without optical modulation.

Fig. 3.
Fig. 3.

Experimental setup for the optical modulation and the corresponding photon current detection.

Fig. 4.
Fig. 4.

Comparison of optical excitation-induced photon current (left axis) and corresponding AM index (right axis) between 1550 and 820 nm NIR excitation. The inset shows measured waveform of QCL AC signal with no (black), 2 mW 820 nm (blue), 2 mW 1550 nm (red) NIR excitation.

Fig. 5.
Fig. 5.

(a) QCL spectrum with no modulation, 5 mw 820 nm and 1550 nm modulation measured by FTIR. (b) Comparison of QCL central wavelength shift under different pump power with 820 and 1550 nm excitation respectively.

Metrics