Abstract

Digital holography (DH) is a 3D measurement technique with a theoretical axial resolution of better than 1–2 nm. However, practically, the axial resolution has been quoted to be in the range 10–20 nm. One possible reason is that the axial measurement error is much larger so that the theoretical axial resolution cannot be achieved. Until now the axial measurement errors of the DH system have not been thoroughly discussed. In this Letter, the impact of CCD chip size on the axial measurement error is investigated through both simulation and experiment. The results show that a larger CCD size reduces the axial measurement error and improves the measurement accuracy of edges.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Juptner, Appl. Opt. 33, 179 (1994).
    [CrossRef]
  2. U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
    [CrossRef]
  3. N. Pandey and B. Hennelly, Appl. Opt. 50, B58 (2011).
    [CrossRef]
  4. H. Z. Jin, H. Wan, Y. P. Zhang, Y. Li, and P. Z. Qiu, J. Mod. Opt. 55, 2989 (2008).
    [CrossRef]
  5. D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, Opt. Eng. 48, 095801 (2009).
    [CrossRef]
  6. Y. Hao and A. Asundi, Appl. Opt. 50, 11 (2011).
    [CrossRef]
  7. G. A. Mills and I. Yamaguchi, Appl. Opt. 44, 1216 (2005).
    [CrossRef]
  8. T. Colomb, J. K. Kuhn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, Opt. Express 14, 4300 (2006).
    [CrossRef]
  9. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, Opt. Lett. 30, 468 (2005).
    [CrossRef]
  10. F. Charriere, J. Kuhn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, Appl. Opt. 45, 829 (2006).
    [CrossRef]
  11. C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, Opt. Express 13, 8693 (2005).
    [CrossRef]
  12. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

2011 (2)

2009 (1)

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, Opt. Eng. 48, 095801 (2009).
[CrossRef]

2008 (1)

H. Z. Jin, H. Wan, Y. P. Zhang, Y. Li, and P. Z. Qiu, J. Mod. Opt. 55, 2989 (2008).
[CrossRef]

2006 (2)

2005 (3)

2002 (1)

U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

1994 (1)

Aspert, N.

Asundi, A.

Charriere, F.

Colomb, T.

Cuche, E.

Depeursinge, C.

Emery, Y.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Hao, Y.

Hennelly, B.

Hennelly, B. M.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, Opt. Eng. 48, 095801 (2009).
[CrossRef]

Jin, H. Z.

H. Z. Jin, H. Wan, Y. P. Zhang, Y. Li, and P. Z. Qiu, J. Mod. Opt. 55, 2989 (2008).
[CrossRef]

Juptner, W.

Juptner, W. P. O.

U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Kelly, D. P.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, Opt. Eng. 48, 095801 (2009).
[CrossRef]

Kim, M. K.

Kuhn, J.

Kuhn, J. K.

Li, Y.

H. Z. Jin, H. Wan, Y. P. Zhang, Y. Li, and P. Z. Qiu, J. Mod. Opt. 55, 2989 (2008).
[CrossRef]

Lo, C. M.

Magistretti, P. J.

Mann, C. J.

Marquet, P.

Mills, G. A.

Montfort, F.

Naughton, T. J.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, Opt. Eng. 48, 095801 (2009).
[CrossRef]

Pandey, N.

N. Pandey and B. Hennelly, Appl. Opt. 50, B58 (2011).
[CrossRef]

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, Opt. Eng. 48, 095801 (2009).
[CrossRef]

Qiu, P. Z.

H. Z. Jin, H. Wan, Y. P. Zhang, Y. Li, and P. Z. Qiu, J. Mod. Opt. 55, 2989 (2008).
[CrossRef]

Rappaz, B.

Rhodes, W. T.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, Opt. Eng. 48, 095801 (2009).
[CrossRef]

Schnars, U.

U. Schnars and W. P. O. Juptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

U. Schnars and W. Juptner, Appl. Opt. 33, 179 (1994).
[CrossRef]

Wan, H.

H. Z. Jin, H. Wan, Y. P. Zhang, Y. Li, and P. Z. Qiu, J. Mod. Opt. 55, 2989 (2008).
[CrossRef]

Weible, K.

Yamaguchi, I.

Yu, L. F.

Zhang, Y. P.

H. Z. Jin, H. Wan, Y. P. Zhang, Y. Li, and P. Z. Qiu, J. Mod. Opt. 55, 2989 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

OPD profile of a step object (red solid line) and an example of its reconstructed OPD image (blue dotted line).

Fig. 2.
Fig. 2.

Relationships between (a) AOE, (b) MOE, and (c) EW and CCD size, respectively. (d) Relationship between EW and lateral resolution λz/D.

Fig. 3.
Fig. 3.

(a) USAF target, (b) G2E3 of the reconstructed 3D image from 960×960 hologram, and (c) G2E3 of the reconstructed 3D image from 660×660 hologram.

Fig. 4.
Fig. 4.

Relationship between (a) AOE, (b) MOE, and (c) EW and CCD size, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Rf(x)=Fresnel[({[f(x)exp(jπλzx2)]×exp(j2πax)×rect(x2D)}rect(x2p))×exp(j2πax)×+δ(xnS)],
Rf(x)=R0f(x)*n=δ(xnλzS)
R0f(x)=Fresnel[({[f(x)exp(jπλzx2)]×exp(j2πax)×rect(x2D)}rect(x2p))×exp(j2πax)].
PSF(x)=exp[jπλz(x2x02)]×{[exp(j2πx0+λzaλzx)×rect(x2p)]sinc(2Dλzx)δ(xx0)}.

Metrics