Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Infrared perfect absorber based on nanowire metamaterial cavities

Not Accessible

Your library or personal account may give you access

Abstract

An infrared perfect absorber based on a gold nanowire metamaterial cavities array on a gold ground plane is designed. The metamaterial made of gold nanowires embedded in an alumina host exhibits an effective permittivity with strong anisotropy, which supports cavity resonant modes of both electric dipole and magnetic dipole. The impedance of the cavity modes matches the incident plane wave in free space, leading to nearly perfect light absorption. The incident optical energy is efficiently converted into heat so that the local temperature of the absorber will increase. Results show that the designed absorber is polarization-insensitive and nearly omnidirectional for the incident angle.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Metamaterial perfect absorber based on artificial dielectric “atoms”

Xiaoming Liu, Ke Bi, Bo Li, Qian Zhao, and Ji Zhou
Opt. Express 24(18) 20454-20460 (2016)

Perfect selective metamaterial solar absorbers

Hao Wang and Liping Wang
Opt. Express 21(S6) A1078-A1093 (2013)

Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures

Zhaoxian Su, Jianbo Yin, and Xiaopeng Zhao
Opt. Express 23(2) 1679-1690 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.