Abstract

For many materials, particularly biological tissues, optic axis orientation directly correlates with the materials performance, such as refractive index. In this Letter, a system measuring the optic axis azimuth was built using the laser feedback method that the polarization state of laser output is linearly polarized when optic axis azimuth is consistent with the initial direction of the laser polarization, otherwise elliptical polarization will be observed. The polarization state of the laser output is highly sensitive to the relative position of the optic axis and the initial direction of the laser polarization. This may be used to determine the optic axis azimuth of a material with a high precision.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, Opt. Lett. 22, 934 (1997).
    [CrossRef]
  2. J. F. de Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, Opt. Express 3, 212 (1998).
    [CrossRef]
  3. J. F. de Boer, T. E. Milner, and J. S. Nelson, Opt. Lett. 24, 300 (1999).
    [CrossRef]
  4. B. Hyle Park, M. C. Pierce, B. Cense, and J. F. de Boer, Opt. Lett. 30, 2587 (2005).
    [CrossRef]
  5. N. Ugryumova, S. V. Gangnus, and S. J. Matcher, Opt. Lett. 31, 2305 (2006).
    [CrossRef]
  6. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander, and T. E. Milner, Opt. Express 13, 4507 (2005).
    [CrossRef]
  7. J. Zhang, S. Guo, W. Jung, J. S. Nelson, and Z. Chen, Opt. Express 11, 3262 (2003).
    [CrossRef]
  8. S. L. A. Carrara, B. Y. Kim, and H. J. Shaw, Opt. Lett. 11, 470 (1986).
    [CrossRef]
  9. Y. Lo, J. Lin, and S. Lee, Appl. Opt. 43, 6248 (2004).
    [CrossRef]
  10. R. M. A. Azzam, Appl. Opt. 19, 3902 (1980).
    [CrossRef]
  11. Y. Wu, J. Lee, Y. Lin, H. Ren, and S. Wu, Opt. Express 13, 7045 (2005).
    [CrossRef]
  12. M. Chiu, C. Chen, and D. Su, J. Opt. Soc. Am. A 13, 1924 (1996).
    [CrossRef]
  13. E. Lamb, Phys. Rev. 134, A1429 (1964).
    [CrossRef]

2006

2005

2004

2003

1999

1998

1997

1996

1986

1980

R. M. A. Azzam, Appl. Opt. 19, 3902 (1980).
[CrossRef]

1964

E. Lamb, Phys. Rev. 134, A1429 (1964).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam, Appl. Opt. 19, 3902 (1980).
[CrossRef]

Carrara, S. L. A.

Cense, B.

Chen, C.

Chen, Z.

Chiu, M.

de Boer, J. F.

Gangnus, S. V.

Guo, S.

Hyle Park, B.

Jung, W.

Kemp, N. J.

Kim, B. Y.

Lamb, E.

E. Lamb, Phys. Rev. 134, A1429 (1964).
[CrossRef]

Lee, J.

Lee, S.

Lin, J.

Lin, Y.

Lo, Y.

Malekafzali, A.

Matcher, S. J.

Milner, T. E.

Nelson, J. S.

Park, J.

Pierce, M. C.

Ren, H.

Rylander, H. G.

Shaw, H. J.

Srinivas, S. M.

Su, D.

Ugryumova, N.

van Gemert, M. J.

Wu, S.

Wu, Y.

Zaatari, H. N.

Zhang, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Physical map of quartz wave plate and optic axis azimuth.

Fig. 2.
Fig. 2.

Experimental setup for optic axis azimuth. M1, M2, high reflector; S, quartz wave plate; ME, feedback mirror; PZT, piezoelectric transducer; AMP, PZT driver circuit; P, polarizer; D, detector.

Fig. 3.
Fig. 3.

Polarization flipping when the feedback cavity length is tuned.

Fig. 4.
Fig. 4.

Curves of polarization flipping. (a), (b) Optic axis is close to the initial direction of laser polarization, (c) optic axis is consistent with the initial direction, and (d) optic axis is far away from the initial direction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

αo=αoαeθoeβe,αe=αeαoθeoβo,
αo=Fo[Zi(ξo)Zi(0)1η],αe=Fe[Zi(ξe)Zi(0)1η],
Zi(ξ)=πexp(ξ2),ξo=νoν0109,ξe=νeν0109Fo=η2πΔ[0.003+(0.006+(1Reffo))×0.5+0.007]Fe=η2πΔ[0.003+(0.006+(1Reffe))×0.5+0.007]Reffo=R2+2r2ret22cos(2kl),Reffe=R2+2r2ret22cos(2kl+2δ),

Metrics