Abstract

We present a method for arbitrary control of the polarization of a light beam. Our method uses two holograms on a binary ferroelectric liquid crystal spatial light modulator (FLCSLM), and so has the potential to allow polarization state switching at kilohertz rates. Unlike previous methods that achieve polarization control using FLCSLMs, our method is common path and requires only the simplest optical components. For this reason, the method is very easy to setup, align, and maintain. In addition, it has the ability to modulate unpolarized input light. We demonstrate the formation of radially, azimuthally, and circularly polarized beams by imaging their focal spots formed at low numerical aperture.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
    [CrossRef]
  2. Q. Zhan, Opt. Express 12, 3377 (2004).
    [CrossRef]
  3. M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
    [CrossRef]
  4. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
    [CrossRef]
  5. K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. 44, L1066 (2005).
    [CrossRef]
  6. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
    [CrossRef]
  7. I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, Opt. Express 20, 364 (2012).
    [CrossRef]
  8. F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, Opt. Express 20, 14015 (2012).
    [CrossRef]
  9. M. A. A. Neil, T. Wilson, and R. Juškaitis, J. Microsc. 197, 219 (2000).
    [CrossRef]
  10. M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, Opt. Lett. 27, 1929 (2002).
    [CrossRef]
  11. B. R. Boruah and M. A. A. Neil, Rev. Sci. Instrum. 80, 13705 (2009).
    [CrossRef]
  12. W.-H. Lee, in Progress in Optics, E. Wolf, ed. (Elsevier, 1978), p. 119232.
  13. S. Warr and R. Mears, Electron. Lett. 31, 714716 (1995).
    [CrossRef]

2012 (2)

2009 (2)

Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
[CrossRef]

B. R. Boruah and M. A. A. Neil, Rev. Sci. Instrum. 80, 13705 (2009).
[CrossRef]

2007 (2)

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[CrossRef]

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

2005 (1)

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. 44, L1066 (2005).
[CrossRef]

2004 (1)

2002 (1)

2001 (1)

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

2000 (1)

M. A. A. Neil, T. Wilson, and R. Juškaitis, J. Microsc. 197, 219 (2000).
[CrossRef]

1995 (1)

S. Warr and R. Mears, Electron. Lett. 31, 714716 (1995).
[CrossRef]

Araki, T.

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. 44, L1066 (2005).
[CrossRef]

Bernet, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

Beversluis, M.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Boruah, B. R.

B. R. Boruah and M. A. A. Neil, Rev. Sci. Instrum. 80, 13705 (2009).
[CrossRef]

Brown, T.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Cottrell, D. M.

Dainty, C.

Davis, J. A.

Feurer, T.

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[CrossRef]

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

Hashimoto, M.

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. 44, L1066 (2005).
[CrossRef]

Hernandez, T. M.

Jesacher, A.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

Juškaitis, R.

M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, Opt. Lett. 27, 1929 (2002).
[CrossRef]

M. A. A. Neil, T. Wilson, and R. Juškaitis, J. Microsc. 197, 219 (2000).
[CrossRef]

Kenny, F.

Lara, D.

Lee, W.-H.

W.-H. Lee, in Progress in Optics, E. Wolf, ed. (Elsevier, 1978), p. 119232.

Massoumian, F.

Maurer, C.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

Mears, R.

S. Warr and R. Mears, Electron. Lett. 31, 714716 (1995).
[CrossRef]

Meier, M.

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[CrossRef]

Moreno, I.

Neil, M. A. A.

B. R. Boruah and M. A. A. Neil, Rev. Sci. Instrum. 80, 13705 (2009).
[CrossRef]

M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, Opt. Lett. 27, 1929 (2002).
[CrossRef]

M. A. A. Neil, T. Wilson, and R. Juškaitis, J. Microsc. 197, 219 (2000).
[CrossRef]

Novotny, L.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

Rodríguez-Herrera, O. G.

Romano, V.

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[CrossRef]

Sand, D.

Warr, S.

S. Warr and R. Mears, Electron. Lett. 31, 714716 (1995).
[CrossRef]

Wilson, T.

M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, Opt. Lett. 27, 1929 (2002).
[CrossRef]

M. A. A. Neil, T. Wilson, and R. Juškaitis, J. Microsc. 197, 219 (2000).
[CrossRef]

Yoshiki, K.

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. 44, L1066 (2005).
[CrossRef]

Youngworth, K.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Zhan, Q.

Adv. Opt. Photon. (1)

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[CrossRef]

Electron. Lett. (1)

S. Warr and R. Mears, Electron. Lett. 31, 714716 (1995).
[CrossRef]

J. Microsc. (1)

M. A. A. Neil, T. Wilson, and R. Juškaitis, J. Microsc. 197, 219 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. 44, L1066 (2005).
[CrossRef]

New J. Phys. (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, New J. Phys. 9, 78 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

B. R. Boruah and M. A. A. Neil, Rev. Sci. Instrum. 80, 13705 (2009).
[CrossRef]

Other (1)

W.-H. Lee, in Progress in Optics, E. Wolf, ed. (Elsevier, 1978), p. 119232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Sketch of a diffraction pattern formed by two simple holograms with perpendicular fringes. The x-polarized spot A0B1 is the zero-order of A and the first-order of B (and vice-versa for A1B0 which is y-polarized). Full polarization control is realized when A0B1 and A1B0 are coincident.

Fig. 2.
Fig. 2.

Schematic of the experimental setup. Expanded incident laser light is near-circularly polarized by a quarter wave plate. It then reflects from A on the right hand side of an FLCSLM. A is then imaged onto B with a reflective 4-f system. The beam is polarized along the y direction between A and B.

Fig. 3.
Fig. 3.

(a) Mapping of the complex function U onto the binary value 0 or 1 that gives full complex amplitude control in the first-order, a zero-order irrespective of the diffracted amplitude, and no even orders. (b) Fringe pattern for a particular value of the fringe width α.

Fig. 4.
Fig. 4.

Focal spot of a circularly polarized beam.

Fig. 5.
Fig. 5.

Holograms used to generate the radially polarized vector beam shown in Fig. 6. Azimuthally polarized light can be generated by interchanging A and B. The hologram axes are rotated from the vertical to align with the orientation of the wave plate bisector on the FLCSLMs.

Fig. 6.
Fig. 6.

Images of low NA focal patterns of radially (upper) and azimuthally (lower) polarized vector beams.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E=(u(r⃗)v(r⃗)),

Metrics