Abstract

Intracavity optical damage is mitigated in a pulsed Ho:YAG laser cavity using the coherent polarization locking (CPL) technique. By splitting the available pump power into two individual Ho:YAG laser rods, we passively coherently locked two orthogonal polarization lasers with 9.13 mJ output pulse energies and 14 ns pulsewidths, and operating at 800 Hz repetition rate. A conventional Ho:YAG laser cavity with the same pump and cavity configuration results in severe optical damage when operating at <2kHz repetition rate, thus limiting the output pulse energies to <5mJ. We also demonstrated, to the best of our knowledge, the first pulsed operation within the entire CPL Ho:YAG laser cavity by Q-switching in one of the polarization arms, producing nanosecond pulses with no sign of pulse instability.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription