Abstract

We report on a high-power narrow-linewidth pulsed laser source emitting at a wavelength of 257 nm. The system is based on a master oscillator power amplifier architecture, with Yb-doped fiber preamplifiers, a Yb:YAG single crystal fiber power amplifier used to overcome the Brillouin limitation in glass fiber and nonlinear frequency conversion stages. This particularly versatile architecture allows the generation of Fourier transform-limited 15 ns pulses at 1030 nm with 22 W of average power and a diffraction-limited beam (M2<1.1). At a repetition rate of 30 kHz, 106 μJ UV pulses are generated corresponding to an average power of 3.2 W.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. T. Case, D. Tan, R. E. Stickel, and J. Mastromarino, Appl. Opt. 45, 2306 (2006).
    [CrossRef]
  2. M. Ostermeyer, P. Kappe, R. Menzel, and V. Wulfmeyer, Appl. Opt. 44, 582 (2005).
    [CrossRef]
  3. M. Laurila, J. Saby, T. T. Alkeskjold, L. Scolari, B. Cocquelin, F. Salin, J. Broeng, and J. Lægsgaard, Opt. Express 19, 10824 (2011).
    [CrossRef]
  4. A. Diening, S. McLean, and A. Starodoumov, Proc. SPIE 7195, 71950H (2009).
    [CrossRef]
  5. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
    [CrossRef]
  6. T. Sudmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, Opt. Express 16, 1546 (2008).
    [CrossRef]
  7. Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Druon, P. Georges, and F. Balembois, Opt. Lett. 36, 748 (2011).
    [CrossRef]
  8. X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönninger, E. Mottay, F. Balembois, and P. Georges, Opt. Lett. 38, 109 (2013).
    [CrossRef]
  9. R. Zhu, J. Wang, J. Zhou, J. Liu, and W. Chen, Appl. Opt. 51, 3826 (2012).
    [CrossRef]
  10. T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
    [CrossRef]

2013 (1)

2012 (1)

2011 (2)

2009 (1)

A. Diening, S. McLean, and A. Starodoumov, Proc. SPIE 7195, 71950H (2009).
[CrossRef]

2008 (1)

2007 (1)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

2006 (1)

2005 (1)

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

Alkeskjold, T. T.

Aubry, N.

Balembois, F.

Broeng, J.

Case, A. T.

Chen, W.

Cocquelin, B.

Délen, X.

Didierjean, J.

Diening, A.

A. Diening, S. McLean, and A. Starodoumov, Proc. SPIE 7195, 71950H (2009).
[CrossRef]

Druon, F.

Eguchi, N.

Georges, P.

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Hönninger, C.

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Imai, Y.

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Kappe, P.

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

Kubota, S.

Lægsgaard, J.

Laurila, M.

Liu, J.

Martial, I.

Mastromarino, J.

Masuda, H.

McLean, S.

A. Diening, S. McLean, and A. Starodoumov, Proc. SPIE 7195, 71950H (2009).
[CrossRef]

Menzel, R.

Mottay, E.

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

Ostermeyer, M.

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Saby, J.

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Saito, M.

Salin, F.

Scolari, L.

Starodoumov, A.

A. Diening, S. McLean, and A. Starodoumov, Proc. SPIE 7195, 71950H (2009).
[CrossRef]

Stickel, R. E.

Sudmeyer, T.

Tan, D.

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Wang, J.

Wulfmeyer, V.

Zaouter, Y.

Zhou, J.

Zhu, R.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Left: beating signal obtained after the LMA fiber amplifier for a 150 ns pulse. Right: Fourier transform of the beating signal.

Fig. 3.
Fig. 3.

Left: SBS threshold peak power at 10 kHz as a function of the output linewidth in the LMA fiber amplifier. Right: pulse shapes after the LMA fiber amplifier for different initial durations.

Fig. 4.
Fig. 4.

Left: output power as a function of pump power for the SCF amplifier (inset: beam profile at full pump power for a seed power of 2.5 W). Right: optical spectrum at maximum power and pulse width of 150 ns.

Fig. 5.
Fig. 5.

Left: power at 515 nm and conversion efficiency as a function of input power at 1030 nm. Right: power at 257 nm and conversion efficiency as a function of input power at 515 nm. The fundamental pulse duration is 15 ns.

Tables (1)

Tables Icon

Table 1. Summary of the Hybrid Source Performances for Various Initial Pulse Widths at a Repetition Rate of 30 kHz

Metrics