Abstract

We introduce the concept of Rayleigh reflectors where extremely sharp angular spectra with unity reflectance are obtained across considerable angular extents. Enabling the device is a rapid, high-efficiency transition from an evanescent to a propagating first-order substrate wave occurring at the Rayleigh angle. A high-index nanolayer located adjacent to the substrate is seen to critically affect the resulting spectra. Away from the Rayleigh anomaly, the device is a basic guided-mode resonance (GMR) high reflector. Hence, this device connects the fundamental concepts of GMR and the Rayleigh anomaly with interesting possible applications, including filters and couplers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Lord Rayleigh, Proc. R. Soc. Lond. A 79, 399 (1907).
    [CrossRef]
  2. J. E. Stewart and W. S. Gallaway, Appl. Opt. 1, 421 (1962).
    [CrossRef]
  3. P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
    [CrossRef]
  4. L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
    [CrossRef]
  5. I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
    [CrossRef]
  6. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
    [CrossRef]
  7. S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993).
    [CrossRef]
  8. Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
    [CrossRef]
  9. R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011).
    [CrossRef]
  10. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995).
    [CrossRef]
  11. M. Navarro-Cia, M. Beruete, F. Falcone, M. Sorolla, and V. Lomakin, Phys. Rev. B 84, 075151 (2011).
    [CrossRef]
  12. L. Shah, R. A. Sims, P. Kadwani, C. C. C. Willis, J. B. Bradford, A. Pung, M. K. Poutous, E. G. Johnson, and M. Richardson, Opt. Express 20, 20558 (2012).
    [CrossRef]

2012 (1)

2011 (2)

M. Navarro-Cia, M. Beruete, F. Falcone, M. Sorolla, and V. Lomakin, Phys. Rev. B 84, 075151 (2011).
[CrossRef]

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011).
[CrossRef]

2004 (1)

1995 (1)

1993 (1)

1989 (1)

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

1985 (2)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
[CrossRef]

1979 (1)

P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
[CrossRef]

1962 (1)

1907 (1)

Lord Rayleigh, Proc. R. Soc. Lond. A 79, 399 (1907).
[CrossRef]

Avrutsky, I. A.

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

Beruete, M.

M. Navarro-Cia, M. Beruete, F. Falcone, M. Sorolla, and V. Lomakin, Phys. Rev. B 84, 075151 (2011).
[CrossRef]

Bradford, J. B.

Curzan, J.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011).
[CrossRef]

Ding, Y.

Falcone, F.

M. Navarro-Cia, M. Beruete, F. Falcone, M. Sorolla, and V. Lomakin, Phys. Rev. B 84, 075151 (2011).
[CrossRef]

Gallaway, W. S.

Gaylord, T. K.

Golubenko, G. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Grann, E. B.

Johnson, E. G.

Kadwani, P.

Lee, K. J.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011).
[CrossRef]

Lomakin, V.

M. Navarro-Cia, M. Beruete, F. Falcone, M. Sorolla, and V. Lomakin, Phys. Rev. B 84, 075151 (2011).
[CrossRef]

Magnusson, R.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011).
[CrossRef]

Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
[CrossRef]

S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993).
[CrossRef]

Mashev, L.

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
[CrossRef]

Moharam, M. G.

Navarro-Cia, M.

M. Navarro-Cia, M. Beruete, F. Falcone, M. Sorolla, and V. Lomakin, Phys. Rev. B 84, 075151 (2011).
[CrossRef]

Neviere, M.

P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
[CrossRef]

Pommet, D. A.

Popov, E.

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
[CrossRef]

Poutous, M. K.

Pung, A.

Rayleigh, Lord

Lord Rayleigh, Proc. R. Soc. Lond. A 79, 399 (1907).
[CrossRef]

Richardson, M.

Shah, L.

Shokooh-Saremi, M.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011).
[CrossRef]

Sims, R. A.

Song, S. H.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011).
[CrossRef]

Sorolla, M.

M. Navarro-Cia, M. Beruete, F. Falcone, M. Sorolla, and V. Lomakin, Phys. Rev. B 84, 075151 (2011).
[CrossRef]

Stewart, J. E.

Svakhin, A. S.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Svavarsson, H. G.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011).
[CrossRef]

Sychugov, V. A.

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Tishchenko, A. V.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Vincent, P.

P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
[CrossRef]

Wang, S. S.

Wawro, D.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011).
[CrossRef]

Willis, C. C. C.

Wu, W.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011).
[CrossRef]

Yoon, J.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011).
[CrossRef]

Zimmerman, S.

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. (1)

P. Vincent and M. Neviere, Appl. Phys. 20, 345 (1979).
[CrossRef]

J. Mod. Opt. (1)

I. A. Avrutsky and V. A. Sychugov, J. Mod. Opt. 36, 1527 (1989).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

M. Navarro-Cia, M. Beruete, F. Falcone, M. Sorolla, and V. Lomakin, Phys. Rev. B 84, 075151 (2011).
[CrossRef]

Proc. R. Soc. Lond. A (1)

Lord Rayleigh, Proc. R. Soc. Lond. A 79, 399 (1907).
[CrossRef]

Proc. SPIE (1)

R. Magnusson, M. Shokooh-Saremi, K. J. Lee, J. Curzan, D. Wawro, S. Zimmerman, W. Wu, J. Yoon, H. G. Svavarsson, and S. H. Song, Proc. SPIE 8102, 810202 (2011).
[CrossRef]

Sov. J. Quantum Electron. (1)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, Sov. J. Quantum Electron. 15, 886 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic model of the Rayleigh reflector under study denoting thicknesses (d) of the layers and refractive indices (n) of the various regions as well as the period (Λ) and fill factor (F) of the grating. The angle of incidence θ is variable, generating the +1 diffraction order denoted as T1 in the substrate for the numerical regimes treated. The period is sufficiently small such that only the zero-order transmitted (T0) and reflected (R0) waves propagate at normal incidence.

Fig. 2.
Fig. 2.

Calculated spectral response of our example Rayleigh reflector for TE-polarized light at normal incidence. Parameters: dg=429nm, d=60nm, n=3.48, nc=1.00, ns=1.50, grating period Λ=1260nm, and fill factor F=0.51.

Fig. 3.
Fig. 3.

Calculated angular spectrum for the Rayleigh reflector under study with λ=2090nm. Parameters are the same as in Fig. 2.

Fig. 4.
Fig. 4.

Details of the R0T1 transition at the filter edge as a function of the illumination wavelength. Parameters are the same as in Fig. 2.

Fig. 5.
Fig. 5.

Internal electric field distribution associated with the Rayleigh reflector under study. (a) Dual TE1 mode standing-wave character at θ=9° and λ=2090nm prior to onset of T1 wave excitation. (b) Field structure with θ=12° and λ=2090nm with the T1 wave propagating in the substrate.

Fig. 6.
Fig. 6.

Reflectance map of the Rayleigh reflector. Parameters are the same as in Fig. 2. The dashed line marks the location of the Rayleigh anomaly.

Metrics