Abstract

Active beam-steering devices near the optical frequencies have long been sought after due to their applications in communication, defense, and display technologies; however, the challenge lies in achieving actively tunable structures near these frequencies. An array of metal-dielectric-metal plasmonic resonators is demonstrated as a dynamic beam-steering device to operate at midinfrared wavelengths. We numerically demonstrate continuous-angle beam steering of 8.75° by making use of tunable properties of silicon as the active dielectric. The proposed device achieves a refractive index insensitive divergence angle and it operates in a 650 nm wide spectral window around 10 μm wavelength. The results of this Letter pave the way to exploiting active beam steering in various applications at midinfrared wavelengths.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, IEEE Trans. Broadcast. 57, 362 (2011).
    [CrossRef]
  2. R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, Sci. Rep. 1, 94 (2011).
    [CrossRef]
  3. H.-C. Jau, T.-H. Lin, R.-X. Fung, S.-Y. Huang, J. H. Liu, and A. Y. G. Fuh, Opt. Express 18, 17498 (2010).
    [CrossRef]
  4. M. Holz and W. C. Goltsos, Opt. Eng. 29, 1392 (1990).
    [CrossRef]
  5. M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, Appl. Phys. Lett. 92, 014106 (2008).
    [CrossRef]
  6. J. F. Lotspeich, IEEE Spectrum 5, 45 (1968).
    [CrossRef]
  7. Q. Song, S. Campione, O. Boyraz, and F. Capolino, Opt. Express 19, 8735 (2011).
    [CrossRef]
  8. V. V. Temnov, Nat. Photonics 6, 728 (2012).
    [CrossRef]
  9. A. E. Attard, Appl. Opt. 38, 3239 (1999).
    [CrossRef]
  10. K. Appavoo and R. F. Haglund, Nano Lett. 11, 1025 (2011).
    [CrossRef]
  11. C. Qiu, X. Ye, R. Soref, L. Yang, and Q. Xu, Opt. Lett. 37, 3942 (2012).
    [CrossRef]
  12. D. de Ceglia, M. A. Vincenti, and M. Scalora, Opt. Lett. 37, 271 (2012).
    [CrossRef]
  13. D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, Appl. Phys. Lett. 96, 201112 (2010).
    [CrossRef]
  14. S. I. Bozhevolnyi and T. Słndergaard, Opt. Express 15, 10869 (2007).
    [CrossRef]
  15. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1997), Vol. 3, pp. 174–179.
  16. International Technology Roadmap for Semiconductors, http://www.itrs.net .
  17. G. Cocorullo, M. Iodice, and I. Rendina, Opt. Lett. 19, 420 (1994).
    [CrossRef]
  18. Q. Xu and M. Lipson, Opt. Express 15, 924 (2007).
    [CrossRef]
  19. Access Laser, http://www.accesslaserco.com/pdf/CO2 Spectrum and Tunable Lasers.pdf .

2012 (3)

2011 (4)

Q. Song, S. Campione, O. Boyraz, and F. Capolino, Opt. Express 19, 8735 (2011).
[CrossRef]

K. Appavoo and R. F. Haglund, Nano Lett. 11, 1025 (2011).
[CrossRef]

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, IEEE Trans. Broadcast. 57, 362 (2011).
[CrossRef]

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, Sci. Rep. 1, 94 (2011).
[CrossRef]

2010 (2)

H.-C. Jau, T.-H. Lin, R.-X. Fung, S.-Y. Huang, J. H. Liu, and A. Y. G. Fuh, Opt. Express 18, 17498 (2010).
[CrossRef]

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

2008 (1)

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, Appl. Phys. Lett. 92, 014106 (2008).
[CrossRef]

2007 (2)

1999 (1)

1994 (1)

1990 (1)

M. Holz and W. C. Goltsos, Opt. Eng. 29, 1392 (1990).
[CrossRef]

1968 (1)

J. F. Lotspeich, IEEE Spectrum 5, 45 (1968).
[CrossRef]

Adams, D. C.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

Appavoo, K.

K. Appavoo and R. F. Haglund, Nano Lett. 11, 1025 (2011).
[CrossRef]

Attard, A. E.

Boyraz, O.

Bozhevolnyi, S. I.

Campione, S.

Capolino, F.

Christodoulides, D. N.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, Sci. Rep. 1, 94 (2011).
[CrossRef]

Cocorullo, G.

de Ceglia, D.

Dodgson, N. A.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, IEEE Trans. Broadcast. 57, 362 (2011).
[CrossRef]

Dreisow, F.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, Sci. Rep. 1, 94 (2011).
[CrossRef]

Favalora, G. E.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, IEEE Trans. Broadcast. 57, 362 (2011).
[CrossRef]

Fuh, A. Y. G.

Fung, R.-X.

Goltsos, W. C.

M. Holz and W. C. Goltsos, Opt. Eng. 29, 1392 (1990).
[CrossRef]

Haglund, R. F.

K. Appavoo and R. F. Haglund, Nano Lett. 11, 1025 (2011).
[CrossRef]

Heinrich, M.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, Sci. Rep. 1, 94 (2011).
[CrossRef]

Holliman, N. S.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, IEEE Trans. Broadcast. 57, 362 (2011).
[CrossRef]

Holz, M.

M. Holz and W. C. Goltsos, Opt. Eng. 29, 1392 (1990).
[CrossRef]

Huang, S.-Y.

Iodice, M.

Jarrahi, M.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, Appl. Phys. Lett. 92, 014106 (2008).
[CrossRef]

Jau, H.-C.

Keil, R.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, Sci. Rep. 1, 94 (2011).
[CrossRef]

Lee, T. H.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, Appl. Phys. Lett. 92, 014106 (2008).
[CrossRef]

Lin, T.-H.

Lipson, M.

Liu, J. H.

Lotspeich, J. F.

J. F. Lotspeich, IEEE Spectrum 5, 45 (1968).
[CrossRef]

Miller, D. A. B.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, Appl. Phys. Lett. 92, 014106 (2008).
[CrossRef]

Nolte, S.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, Sci. Rep. 1, 94 (2011).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1997), Vol. 3, pp. 174–179.

Pease, R. F. W.

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, Appl. Phys. Lett. 92, 014106 (2008).
[CrossRef]

Pertsch, T.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, Sci. Rep. 1, 94 (2011).
[CrossRef]

Pockett, L.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, IEEE Trans. Broadcast. 57, 362 (2011).
[CrossRef]

Podolskiy, V. A.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

Qiu, C.

Rendina, I.

Ribaudo, T.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

Scalora, M.

Slndergaard, T.

Song, Q.

Soref, R.

Szameit, A.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, Sci. Rep. 1, 94 (2011).
[CrossRef]

Temnov, V. V.

V. V. Temnov, Nat. Photonics 6, 728 (2012).
[CrossRef]

Thongrattanasiri, S.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

Tunnermann, A.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, Sci. Rep. 1, 94 (2011).
[CrossRef]

Vincenti, M. A.

Wasserman, D.

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

Xu, Q.

Yang, L.

Ye, X.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy, and D. Wasserman, Appl. Phys. Lett. 96, 201112 (2010).
[CrossRef]

M. Jarrahi, R. F. W. Pease, D. A. B. Miller, and T. H. Lee, Appl. Phys. Lett. 92, 014106 (2008).
[CrossRef]

IEEE Spectrum (1)

J. F. Lotspeich, IEEE Spectrum 5, 45 (1968).
[CrossRef]

IEEE Trans. Broadcast. (1)

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, IEEE Trans. Broadcast. 57, 362 (2011).
[CrossRef]

Nano Lett. (1)

K. Appavoo and R. F. Haglund, Nano Lett. 11, 1025 (2011).
[CrossRef]

Nat. Photonics (1)

V. V. Temnov, Nat. Photonics 6, 728 (2012).
[CrossRef]

Opt. Eng. (1)

M. Holz and W. C. Goltsos, Opt. Eng. 29, 1392 (1990).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Sci. Rep. (1)

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tunnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, Sci. Rep. 1, 94 (2011).
[CrossRef]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1997), Vol. 3, pp. 174–179.

International Technology Roadmap for Semiconductors, http://www.itrs.net .

Access Laser, http://www.accesslaserco.com/pdf/CO2 Spectrum and Tunable Lasers.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Array of MDM resonators with different widths for active beam steering.

Fig. 2.
Fig. 2.

(a) Single MDM resonator element supports right- (R-SP) and left- (L-SP) propagating SPs. (b) Electric-field intensity profile shows a standing wave pattern due to Fabry–Perot resonance of SPs. (c) Dipole-like radiation pattern of the single MDM resonator.

Fig. 3.
Fig. 3.

(a) Front lobe of the phased-array-like MDM structure shifts by 8.75° and the back lobe shifts by 2.35° when nSi changes by 0.15. (b) Normalized radiation intensity (|E|n2) at the center of the front lobe shifts continuously and its amplitude increases by decreasing nSi.

Fig. 4.
Fig. 4.

Magnetic-field intensity (|H|2) profile indicates a shift of resonant behavior toward wider elements (to right) as nSi decreases intermittently from (a) 3.42 to (b) 3.34 and (c) 3.27.

Fig. 5.
Fig. 5.

Maximum beam-steering angle, Δθmax, is relatively preserved within a FWHM of 650 nm around the operation wavelength (λ=10μm).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k0neffw=mπ+φ,

Metrics