Abstract

We demonstrate reconfigurable photonic ultrawideband (UWB) pulse generation by injecting a phase-modulated optical wave into a semiconductor laser. By adjusting the injection power level and phase modulation depth, the photonic UWB generator is capable of generating either a single-optical-carrier monocycle or power-efficient UWB pulses. A UWB pulse with spectral power efficiency (SPE) of 36.10% has been achieved by optimizing the injection parameters. Transmission in an 8.4 km single mode fiber results in a degradation of SPE to 27.55% without significant pulse distortion.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Porcino and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
    [CrossRef]
  2. S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
    [CrossRef]
  3. S. Pan and J. Yao, J. Lightwave Technol. 28, 2445 (2010).
    [CrossRef]
  4. Q. Wang and J. Yao, Electron. Lett. 42, 1304 (2006).
    [CrossRef]
  5. J. Dong, X. Zhang, J. Xu, and D. Huang, Opt. Lett. 32, 2158 (2007).
    [CrossRef]
  6. J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, Opt. Lett. 33, 288 (2008).
    [CrossRef]
  7. S. Pan and J. Yao, Opt. Lett. 34, 160 (2009).
    [CrossRef]
  8. Y. Dai, J. Du, X. Fu, G. K. P. Lei, and C. Shu, Opt. Lett. 36, 2695 (2011).
    [CrossRef]
  9. S. Abraha, C. Okonkwo, E. Tangdiongga, and A. Koonen, Opt. Lett. 36, 2363 (2011).
    [CrossRef]
  10. M. Abtahi, J. Magne, M. Mirshafiei, L. Rusch, and S. LaRochelle, J. Lightwave Technol. 26, 628 (2008).
    [CrossRef]
  11. M. Bolea, J. Mora, B. Ortega, and J. Capmany, Opt. Express 17, 5023 (2009).
    [CrossRef]
  12. E. Zhou, X. Xu, K -S. Lui, and K. K. Y. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
    [CrossRef]
  13. X. Yu, T. B. Gibbon, M. Pawlik, S. Blaaberg, and I. T. Monroy, Opt. Express 17, 9680 (2009).
    [CrossRef]
  14. J. Zheng, M. Zhang, A. Wang, and Y. Wang, Opt. Lett. 35, 1734 (2010).
    [CrossRef]
  15. I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, IEEE J. Quantum Electron. 24, 148 (1988).
    [CrossRef]
  16. S. C. Chan, IEEE J. Quantum Electron. 46, 421 (2010).
    [CrossRef]
  17. Y. Awaji, T. Kuri, W. Chujo, M. Naganuma, and K. Kitayama, Opt. Lett. 26, 1538 (2001).
    [CrossRef]

2011 (2)

2010 (4)

J. Zheng, M. Zhang, A. Wang, and Y. Wang, Opt. Lett. 35, 1734 (2010).
[CrossRef]

S. Pan and J. Yao, J. Lightwave Technol. 28, 2445 (2010).
[CrossRef]

E. Zhou, X. Xu, K -S. Lui, and K. K. Y. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
[CrossRef]

S. C. Chan, IEEE J. Quantum Electron. 46, 421 (2010).
[CrossRef]

2009 (3)

2008 (2)

2007 (1)

2006 (1)

Q. Wang and J. Yao, Electron. Lett. 42, 1304 (2006).
[CrossRef]

2004 (1)

S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
[CrossRef]

2003 (1)

D. Porcino and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

2001 (1)

1988 (1)

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, IEEE J. Quantum Electron. 24, 148 (1988).
[CrossRef]

Abraha, S.

Abtahi, M.

Awaji, Y.

Blaaberg, S.

Bolea, M.

Capmany, J.

Chabran, C.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, IEEE J. Quantum Electron. 24, 148 (1988).
[CrossRef]

Chan, S. C.

S. C. Chan, IEEE J. Quantum Electron. 46, 421 (2010).
[CrossRef]

Chujo, W.

Dai, Y.

Debarge, G.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, IEEE J. Quantum Electron. 24, 148 (1988).
[CrossRef]

Dong, J.

Du, J.

Foerster, J. R.

S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
[CrossRef]

Fu, S.

Fu, X.

Gallion, P.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, IEEE J. Quantum Electron. 24, 148 (1988).
[CrossRef]

Gibbon, T. B.

Hirt, W.

D. Porcino and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

Huang, D.

Kitayama, K.

Koonen, A.

Kuri, T.

LaRochelle, S.

Leeper, D. G.

S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
[CrossRef]

Lei, G. K. P.

Li, J.

Lin, J.

Lui, K -S.

E. Zhou, X. Xu, K -S. Lui, and K. K. Y. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
[CrossRef]

Magne, J.

Mirshafiei, M.

Monroy, I. T.

Mora, J.

Naganuma, M.

Okonkwo, C.

Ortega, B.

Pan, S.

Pawlik, M.

Petitbon, I.

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, IEEE J. Quantum Electron. 24, 148 (1988).
[CrossRef]

Porcino, D.

D. Porcino and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

Roy, S.

S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
[CrossRef]

Rusch, L.

Shu, C.

Shum, P.

Somayazulu, V. S.

S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
[CrossRef]

Tang, M.

Tangdiongga, E.

Wang, A.

Wang, Q.

Q. Wang and J. Yao, Electron. Lett. 42, 1304 (2006).
[CrossRef]

Wang, Y.

Wong, K. K. Y.

E. Zhou, X. Xu, K -S. Lui, and K. K. Y. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
[CrossRef]

Wu, J.

Xu, J.

Xu, K.

Xu, X.

E. Zhou, X. Xu, K -S. Lui, and K. K. Y. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
[CrossRef]

Yao, J.

Yu, X.

Zhang, M.

Zhang, X.

Zheng, J.

Zhou, E.

E. Zhou, X. Xu, K -S. Lui, and K. K. Y. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
[CrossRef]

Electron. Lett. (1)

Q. Wang and J. Yao, Electron. Lett. 42, 1304 (2006).
[CrossRef]

IEEE Commun. Mag. (1)

D. Porcino and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, IEEE J. Quantum Electron. 24, 148 (1988).
[CrossRef]

S. C. Chan, IEEE J. Quantum Electron. 46, 421 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Zhou, X. Xu, K -S. Lui, and K. K. Y. Wong, IEEE Photon. Technol. Lett. 22, 1063 (2010).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (2)

Opt. Lett. (7)

Proc. IEEE (1)

S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, Proc. IEEE 92, 295 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the reconfigurable photonic UWB pulse generator. ML, master laser; PC, polarization controller; PM, phase modulator; VOA, variable optical attenuator; CIR, optical circulator; SL, slave laser; FC, fiber coupler; OSA, optical spectrum analyzer; PD, photodetector; ESA, electrical spectrum analyzer; OSC, electrical sampling oscilloscope.

Fig. 2.
Fig. 2.

Optical spectra of the slave laser in the free-running and stable-locking state.

Fig. 3.
Fig. 3.

Monocycle pulses generated with injection power Pm=5.2μW and phase modulation depth (a) Δϕ=0.784π and (b) Δϕ=0.866π. Dark trace: input electrical signal pulse shape. (c) and (d) are the corresponding power spectra of the pulses. Red line: FCC mask for indoor applications.

Fig. 4.
Fig. 4.

(a) A power-efficient pulse generated with injection power Pm=14.6μW and phase modulation depth Δϕ=0.784π. (b) Corresponding power spectrum of the pulse.

Fig. 5.
Fig. 5.

(a) FCC compliant power-efficient pulse generated with injection power Pm=14.6μW and phase modulation depth Δϕ=0.636π. (b) Corresponding power spectrum of the pulse.

Fig. 6.
Fig. 6.

(a) Optical spectrum and (b) waveform of the monocycle pulse generated with Pm=5.2μW and Δϕ=0.784π, after transmission in an 8.4 km SMF. (c) Optical spectrum and (d) waveform of the power-efficient pulse generated with Pm=14.6μW and Δϕ=0.636π, after transmission in an 8.4 km SMF.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ξinj=PinjPscPmPs=0.046.
Δfr0.8Δφr2πtr=0.4Δϕπtr=0.4VpVπtr,
Δff0.8Δφf2πtf=0.4Δϕπtf=0.4VpVπtf.

Metrics