Abstract

We present a simple scheme of narrowband terahertz (THz) generation by optical rectification in the lithium niobate crystal covered by a binary phase mask. It is shown that a single-domain crystal illumination by spatiotemporal shaped fs-laser pulses is equivalent to the formation of a transversally patterned, quasi-phase-matching structure. Decrease of the optical beam size on the mask leads to an increase of the THz-wave linewidth from 17 GHz to a few THz. The frequency of the generation was tuned in the range of 0.4–1.0 THz by building images of the mask in the crystal with various magnifications. Application results of the presented THz source for measuring transmittance of the superconducting NbN thin film in the 4.2–15 K temperature range are also presented.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, Nat. Photonics 1, 97 (2007).
    [CrossRef]
  2. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  3. J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, Opt. Express 11, 2486 (2003).
    [CrossRef]
  4. A. G. Stepanov, J. Hebling, and J. Kuhl, Opt. Express 12, 4650 (2004).
    [CrossRef]
  5. Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, Appl. Phys. Lett. 99, 071102 (2011).
    [CrossRef]
  6. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
    [CrossRef]
  7. J. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, Appl. Phys. B 86, 185 (2007).
  8. K. L. Vodopyanov, Opt. Express 14, 2263 (2006).
    [CrossRef]
  9. C. Zhang, Y. Avetisyan, A. Glosser, I. Kawayama, H. Murakami, and M. Tonouchi, Opt. Express 20, 8784 (2012).
    [CrossRef]
  10. Y. Avetisyan and M. Tonouchi, Opt. Lett. 37, 4155 (2012).
    [CrossRef]
  11. Y. Avestisyan, C. Zhang, I. Kawayama, H. Murakami, T. Somekawa, H. Chosrowjan, M. Fujita, and M. Tonouchi, Opt. Express 20, 25752 (2012).
    [CrossRef]
  12. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, J. Appl. Phys. 97, 123505 (2005).
    [CrossRef]

2012

2011

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, Appl. Phys. Lett. 99, 071102 (2011).
[CrossRef]

2007

J. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, Appl. Phys. B 86, 185 (2007).

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

2006

2005

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

2004

2003

2000

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Ahn, J.

Averitt, R. D.

Avestisyan, Y.

Avetisyan, Y.

Beigang, R.

J. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, Appl. Phys. B 86, 185 (2007).

Chen, Z.

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, Appl. Phys. Lett. 99, 071102 (2011).
[CrossRef]

Chosrowjan, H.

Efimov, A. V.

Fujita, M.

Galvanauskas, A.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Glosser, A.

Hebling, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, Opt. Express 12, 4650 (2004).
[CrossRef]

Kawayama, I.

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

A. G. Stepanov, J. Hebling, and J. Kuhl, Opt. Express 12, 4650 (2004).
[CrossRef]

L’huillier, J.

J. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, Appl. Phys. B 86, 185 (2007).

Lee, Y.-S.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Meade, T.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Murakami, H.

Nelson, K. A.

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, Appl. Phys. Lett. 99, 071102 (2011).
[CrossRef]

Norris, T.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Pálfalvi, L.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Perlin, V.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Péter, A.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Somekawa, T.

Stepanov, A. G.

Taylor, A. J.

Theuer, M.

J. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, Appl. Phys. B 86, 185 (2007).

Tonouchi, M.

Torosyan, G.

J. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, Appl. Phys. B 86, 185 (2007).

Vodopyanov, K. L.

Werley, C. A.

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, Appl. Phys. Lett. 99, 071102 (2011).
[CrossRef]

Winful, H.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

Zhang, C.

Zhou, X.

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, Appl. Phys. Lett. 99, 071102 (2011).
[CrossRef]

Appl. Phys. B

J. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, Appl. Phys. B 86, 185 (2007).

Appl. Phys. Lett.

Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, Appl. Phys. Lett. 99, 071102 (2011).
[CrossRef]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000).
[CrossRef]

J. Appl. Phys.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Nat. Photonics

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic view for THz-wave generation in an LiNbO3 crystal using a PM, the Cherenkov radiation angle θch64°, (b) wave vector diagram, and (c) microscope photo of the PM.

Fig. 2.
Fig. 2.

(a) THz waveforms measured with PMs having periods of Λ=110, 160 μm, and SMs with Λ=100, 154 μm. (b) Corresponding Fourier spectra, the inset shows the generation linewidth versus the pump spot size.

Fig. 3.
Fig. 3.

Generation frequency versus image magnification for masks with periods Λ=160μm (red squares) and Λ=110μm (black triangles). Solid lines show dependencies calculated with Eq. (1). The inset shows the spectra measured with various mask image magnifications.

Fig. 4.
Fig. 4.

Transmission of superconducting NbN film measured versus temperature at 0.42 and 0.63 THz, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

fTHz=cΛnTHz2ng2,
ηe=|sinπ2fTHzf0|.

Metrics