Abstract

We report ultrawide-range and highly efficient wavelength conversion by exploiting four-wave mixing (FWM) in Raman distributed-feedback (R-DFB) fiber lasers. The lasers are 30 cm long center π phase-shifted DFB gratings UV written in commercially available germano-silica (Ge/Si) single-mode fibers (PS980 from Fibercore Ltd., and UHNA4 from Nufern). The R-DFB lasing signal acts as a pump wave for the FWM process within the DFB cavity, and the obtained FWM conversion efficiency is around 25dB with a maximum wavelength conversion range of 112 nm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  2. J. Minch, C. S. Chang, and S. L. Chuang, IEEE Photon. Technol. Lett. 4, 69 (1992).
    [CrossRef]
  3. J. Minch, C. S. Chang, and S. L. Chuang, Appl. Phys. Lett. 70, 1360 (1997).
    [CrossRef]
  4. A. Camerlingo, F. Parmigiani, F. Xian, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, IEEE Photon. Technol. Lett. 22, 628 (2010).
    [CrossRef]
  5. H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, IEEE J. Quantum Electron. 33, 2002 (1997).
    [CrossRef]
  6. J. Shi, S.-u. Alam, and M. Ibsen, Opt. Lett. 37, 1544 (2012).
    [CrossRef]
  7. J. Shi, S.-u. Alam, and M. Ibsen, Opt. Express 20, 5082 (2012).
    [CrossRef]
  8. Z. Qingsheng, in Antennas and Propagation Society International Symposium (IEEE, 1998), pp. 1060–1063.
  9. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 842 (1998).
    [CrossRef]
  10. W. H. Loh, B. N. Samson, and J. P. de. Sandro, Appl. Phys. Lett. 69, 3773 (1996).
    [CrossRef]
  11. I. V. Kabakova, T. Walsh, C. M. de Sterke, and B. J. Eggleton, J. Opt. Soc. Am. B 27, 1343 (2010).
    [CrossRef]

2012 (2)

2010 (2)

A. Camerlingo, F. Parmigiani, F. Xian, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, IEEE Photon. Technol. Lett. 22, 628 (2010).
[CrossRef]

I. V. Kabakova, T. Walsh, C. M. de Sterke, and B. J. Eggleton, J. Opt. Soc. Am. B 27, 1343 (2010).
[CrossRef]

1998 (1)

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 842 (1998).
[CrossRef]

1997 (2)

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, IEEE J. Quantum Electron. 33, 2002 (1997).
[CrossRef]

J. Minch, C. S. Chang, and S. L. Chuang, Appl. Phys. Lett. 70, 1360 (1997).
[CrossRef]

1996 (1)

W. H. Loh, B. N. Samson, and J. P. de. Sandro, Appl. Phys. Lett. 69, 3773 (1996).
[CrossRef]

1992 (1)

J. Minch, C. S. Chang, and S. L. Chuang, IEEE Photon. Technol. Lett. 4, 69 (1992).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Alam, S.-u.

Camerlingo, A.

A. Camerlingo, F. Parmigiani, F. Xian, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, IEEE Photon. Technol. Lett. 22, 628 (2010).
[CrossRef]

Chang, C. S.

J. Minch, C. S. Chang, and S. L. Chuang, Appl. Phys. Lett. 70, 1360 (1997).
[CrossRef]

J. Minch, C. S. Chang, and S. L. Chuang, IEEE Photon. Technol. Lett. 4, 69 (1992).
[CrossRef]

Chuang, S. L.

J. Minch, C. S. Chang, and S. L. Chuang, Appl. Phys. Lett. 70, 1360 (1997).
[CrossRef]

J. Minch, C. S. Chang, and S. L. Chuang, IEEE Photon. Technol. Lett. 4, 69 (1992).
[CrossRef]

Cole, M. J.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 842 (1998).
[CrossRef]

de Sterke, C. M.

de. Sandro, J. P.

W. H. Loh, B. N. Samson, and J. P. de. Sandro, Appl. Phys. Lett. 69, 3773 (1996).
[CrossRef]

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 842 (1998).
[CrossRef]

Eggleton, B. J.

Horak, P.

A. Camerlingo, F. Parmigiani, F. Xian, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, IEEE Photon. Technol. Lett. 22, 628 (2010).
[CrossRef]

Ibsen, M.

Ishikawa, H.

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, IEEE J. Quantum Electron. 33, 2002 (1997).
[CrossRef]

Kabakova, I. V.

Kuwatsuka, H.

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, IEEE J. Quantum Electron. 33, 2002 (1997).
[CrossRef]

Laming, R. I.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 842 (1998).
[CrossRef]

Loh, W. H.

A. Camerlingo, F. Parmigiani, F. Xian, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, IEEE Photon. Technol. Lett. 22, 628 (2010).
[CrossRef]

W. H. Loh, B. N. Samson, and J. P. de. Sandro, Appl. Phys. Lett. 69, 3773 (1996).
[CrossRef]

Matsuda, M.

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, IEEE J. Quantum Electron. 33, 2002 (1997).
[CrossRef]

Minch, J.

J. Minch, C. S. Chang, and S. L. Chuang, Appl. Phys. Lett. 70, 1360 (1997).
[CrossRef]

J. Minch, C. S. Chang, and S. L. Chuang, IEEE Photon. Technol. Lett. 4, 69 (1992).
[CrossRef]

Parmigiani, F.

A. Camerlingo, F. Parmigiani, F. Xian, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, IEEE Photon. Technol. Lett. 22, 628 (2010).
[CrossRef]

Petropoulos, P.

A. Camerlingo, F. Parmigiani, F. Xian, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, IEEE Photon. Technol. Lett. 22, 628 (2010).
[CrossRef]

Poletti, F.

A. Camerlingo, F. Parmigiani, F. Xian, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, IEEE Photon. Technol. Lett. 22, 628 (2010).
[CrossRef]

Qingsheng, Z.

Z. Qingsheng, in Antennas and Propagation Society International Symposium (IEEE, 1998), pp. 1060–1063.

Richardson, D. J.

A. Camerlingo, F. Parmigiani, F. Xian, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, IEEE Photon. Technol. Lett. 22, 628 (2010).
[CrossRef]

Samson, B. N.

W. H. Loh, B. N. Samson, and J. P. de. Sandro, Appl. Phys. Lett. 69, 3773 (1996).
[CrossRef]

Shi, J.

Shoji, H.

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, IEEE J. Quantum Electron. 33, 2002 (1997).
[CrossRef]

Walsh, T.

Xian, F.

A. Camerlingo, F. Parmigiani, F. Xian, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, IEEE Photon. Technol. Lett. 22, 628 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

J. Minch, C. S. Chang, and S. L. Chuang, Appl. Phys. Lett. 70, 1360 (1997).
[CrossRef]

W. H. Loh, B. N. Samson, and J. P. de. Sandro, Appl. Phys. Lett. 69, 3773 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, IEEE J. Quantum Electron. 33, 2002 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. Camerlingo, F. Parmigiani, F. Xian, F. Poletti, P. Horak, W. H. Loh, D. J. Richardson, and P. Petropoulos, IEEE Photon. Technol. Lett. 22, 628 (2010).
[CrossRef]

J. Minch, C. S. Chang, and S. L. Chuang, IEEE Photon. Technol. Lett. 4, 69 (1992).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 842 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Other (2)

Z. Qingsheng, in Antennas and Propagation Society International Symposium (IEEE, 1998), pp. 1060–1063.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of FWM generation from an R-DFB fiber laser. ISO, isolator; PC, polarization controller; WDM, wavelength division multiplexer; OSA, optical spectrum analyzer.

Fig. 2.
Fig. 2.

(a) Calculated GVD of the fiber of PS980 and UHNA4, respectively. (b) Calculated GVD of transmitted light of R-DFB1 grating.

Fig. 3.
Fig. 3.

(a) Output spectra from R-DFB1 and R-DFB2 with an RBW of 1 nm. (b) Spectra of CW pump wave (No. 1), R-DFB signals (No. 2), and conjugate waves (No. 3) from R-DFB1 and R-DFB2, respectively, at an RBW of 0.01 nm. The vertical dashed lines indicate the wavelengths of the CW pump at λi (No. 1), the R-DFB signals at λjm (No. 2), and the conjugate waves at λkm(m=1,2) (No. 3), respectively.

Fig. 4.
Fig. 4.

FWM conversion efficiency with respect to the incident CW pump power of 1064.6 nm.

Fig. 5.
Fig. 5.

Output spectra from cascaded R-DFB1 and R-DFB2 with an RBW of 1 nm.

Metrics