Abstract

Thermal refraction focusing in planar index-antiguided lasers is investigated both theoretically and experimentally. An analytical model based on zero-field approximation is presented for treating the combined effects of index antiguiding and thermal focusing. At very low pumping power, the mode is antiguided by the amplifier boundary, whereas at high pumping power it narrows due to thermal focusing. Theoretical results are in reasonable agreement with experimental data.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, J. Opt. Soc. Am. A 20, 1617 (2003).
    [CrossRef]
  2. A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, Appl. Phys. Lett. 89, 251101 (2006).
    [CrossRef]
  3. T.-H. Her, X. Ao, and L. W. Casperson, Opt. Lett. 34, 2411 (2009).
    [CrossRef]
  4. W. Hageman, Y. Chen, X. Wang, L. Gao, G. U. Kim, M. Richardson, and M. Bass, J. Opt. Soc. Am. B 27, 2451 (2010).
    [CrossRef]
  5. K.-L. Yan, E.-Y. Zhou, W. Wei, and B. Peng, J. Mod. Opt. 57, 480 (2010).
    [CrossRef]
  6. C. Wang, T.-H. Her, and L. W. Casperson, Opt. Lett. 37, 815 (2012).
    [CrossRef]
  7. A. E. Siegman, J. Opt. Soc. Am. B 24, 1677 (2007).
    [CrossRef]
  8. J. Eggleston, T. Kane, K. Kuhn, J. Unternahrer, and R. Byer, IEEE J. Quantum Electron. 20, 289 (1984).
    [CrossRef]
  9. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables Vol. 55 of National Bureau of Standards Applied Mathematics Series (U. S. Government Printing Office, 1970), Eq. (19.1.2).
  10. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables Vol. 55 of National Bureau of Standards Applied Mathematics Series (U. S. Government Printing Office, 1970), Eq. (19.2.1).
  11. L. W. Casperson, J. Opt. Soc. Am. 66, 1373 (1976).
    [CrossRef]
  12. H. J. Baker, A. A. Chesworth, D. P. Millas, and D. R. Hall, Opt. Commun. 191, 125 (2001).
    [CrossRef]

2012

2010

2009

2007

2006

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, Appl. Phys. Lett. 89, 251101 (2006).
[CrossRef]

2003

2001

H. J. Baker, A. A. Chesworth, D. P. Millas, and D. R. Hall, Opt. Commun. 191, 125 (2001).
[CrossRef]

1984

J. Eggleston, T. Kane, K. Kuhn, J. Unternahrer, and R. Byer, IEEE J. Quantum Electron. 20, 289 (1984).
[CrossRef]

1976

Ao, X.

Baker, H. J.

H. J. Baker, A. A. Chesworth, D. P. Millas, and D. R. Hall, Opt. Commun. 191, 125 (2001).
[CrossRef]

Ballato, J.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, Appl. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Bass, M.

W. Hageman, Y. Chen, X. Wang, L. Gao, G. U. Kim, M. Richardson, and M. Bass, J. Opt. Soc. Am. B 27, 2451 (2010).
[CrossRef]

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, Appl. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Byer, R.

J. Eggleston, T. Kane, K. Kuhn, J. Unternahrer, and R. Byer, IEEE J. Quantum Electron. 20, 289 (1984).
[CrossRef]

Casperson, L. W.

Chen, Y.

W. Hageman, Y. Chen, X. Wang, L. Gao, G. U. Kim, M. Richardson, and M. Bass, J. Opt. Soc. Am. B 27, 2451 (2010).
[CrossRef]

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, Appl. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Chesworth, A. A.

H. J. Baker, A. A. Chesworth, D. P. Millas, and D. R. Hall, Opt. Commun. 191, 125 (2001).
[CrossRef]

Eggleston, J.

J. Eggleston, T. Kane, K. Kuhn, J. Unternahrer, and R. Byer, IEEE J. Quantum Electron. 20, 289 (1984).
[CrossRef]

Foy, P.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, Appl. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Gao, L.

Hageman, W.

Hall, D. R.

H. J. Baker, A. A. Chesworth, D. P. Millas, and D. R. Hall, Opt. Commun. 191, 125 (2001).
[CrossRef]

Hawkins, W.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, Appl. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Her, T.-H.

Kane, T.

J. Eggleston, T. Kane, K. Kuhn, J. Unternahrer, and R. Byer, IEEE J. Quantum Electron. 20, 289 (1984).
[CrossRef]

Kim, G. U.

Kuhn, K.

J. Eggleston, T. Kane, K. Kuhn, J. Unternahrer, and R. Byer, IEEE J. Quantum Electron. 20, 289 (1984).
[CrossRef]

Millas, D. P.

H. J. Baker, A. A. Chesworth, D. P. Millas, and D. R. Hall, Opt. Commun. 191, 125 (2001).
[CrossRef]

Peng, B.

K.-L. Yan, E.-Y. Zhou, W. Wei, and B. Peng, J. Mod. Opt. 57, 480 (2010).
[CrossRef]

Richardson, M.

Richardson, M. C.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, Appl. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Siegman, A. E.

A. E. Siegman, J. Opt. Soc. Am. B 24, 1677 (2007).
[CrossRef]

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, Appl. Phys. Lett. 89, 251101 (2006).
[CrossRef]

A. E. Siegman, J. Opt. Soc. Am. A 20, 1617 (2003).
[CrossRef]

Sudesh, V.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, Appl. Phys. Lett. 89, 251101 (2006).
[CrossRef]

Unternahrer, J.

J. Eggleston, T. Kane, K. Kuhn, J. Unternahrer, and R. Byer, IEEE J. Quantum Electron. 20, 289 (1984).
[CrossRef]

Wang, C.

Wang, X.

Wei, W.

K.-L. Yan, E.-Y. Zhou, W. Wei, and B. Peng, J. Mod. Opt. 57, 480 (2010).
[CrossRef]

Yan, K.-L.

K.-L. Yan, E.-Y. Zhou, W. Wei, and B. Peng, J. Mod. Opt. 57, 480 (2010).
[CrossRef]

Zhou, E.-Y.

K.-L. Yan, E.-Y. Zhou, W. Wei, and B. Peng, J. Mod. Opt. 57, 480 (2010).
[CrossRef]

Appl. Phys. Lett.

A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W. Hawkins, and J. Ballato, Appl. Phys. Lett. 89, 251101 (2006).
[CrossRef]

IEEE J. Quantum Electron.

J. Eggleston, T. Kane, K. Kuhn, J. Unternahrer, and R. Byer, IEEE J. Quantum Electron. 20, 289 (1984).
[CrossRef]

J. Mod. Opt.

K.-L. Yan, E.-Y. Zhou, W. Wei, and B. Peng, J. Mod. Opt. 57, 480 (2010).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

H. J. Baker, A. A. Chesworth, D. P. Millas, and D. R. Hall, Opt. Commun. 191, 125 (2001).
[CrossRef]

Opt. Lett.

Other

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables Vol. 55 of National Bureau of Standards Applied Mathematics Series (U. S. Government Printing Office, 1970), Eq. (19.1.2).

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables Vol. 55 of National Bureau of Standards Applied Mathematics Series (U. S. Government Printing Office, 1970), Eq. (19.2.1).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Field intensity distribution across the thickness 2d of a laser amplifier simultaneously antiguided by the amplifier boundaries and guided by thermal index variations, for various values of Gaussian spot size measured in units of d.

Fig. 2.
Fig. 2.

Vertically offset near-field intensity profile along the IAG direction at various pump powers above threshold.

Fig. 3.
Fig. 3.

Full width at half-maximum of the steady-state intensity distribution of the fundamental mode in an antiguided YAG laser, including the width-limiting effects of the amplifier boundaries (horizontal dashed line) and thermal refraction focusing (curved dashed line). The lasing threshold power is 2.5 W.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2E+k2E=0,
k2(x)=ko[kok2xx2],
1X(x)2X(x)x2+(axkok2xx2)=0,
1Z(z)2Z(z)z2+(ko2ax)=0,
2X(x)x2(x24+a)X(x)=0,
X(x)=exp(x24)·F11(a2+14;12;x22).
exp(x24)=exp[(βoβ2x)1/2x22]=exp(x2wx2),
X(x)=exp(x2wx2)·F11(a2+14;12;2x2wx2).
wx=bP1/4,

Metrics