Abstract

We report the first experimental demonstration of single transmissive fiber Bragg grating implementation of a first-order optical differentiation. The device has been designed and fabricated, and the experimental results show a good performance over an operational bandwidth of 2nm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Q. Ngo and L. N. Binh, Fiber Integr. Opt. 14, 359 (1995).
    [CrossRef]
  2. F. Li, Y. Park, and J. Azaña, Opt. Lett. 32, 3364 (2007).
    [CrossRef]
  3. A. Consoli, J. M. G. Tijero, and I. Esquivias, Opt. Express 19, 10805 (2011).
    [CrossRef]
  4. R. Slavik, Y. Park, and J. Azaña, Opt. Express 15, 6717 (2007).
    [CrossRef]
  5. J. Azaña, IEEE Photon. J. 2, 359 (2010).
    [CrossRef]
  6. N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
    [CrossRef]
  7. Y. Park, R. Slavik, and J. Azaña, Opt. Lett. 32, 710 (2007).
    [CrossRef]
  8. R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, Opt. Express 14, 10699 (2006).
    [CrossRef]
  9. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, Opt. Express 15, 371 (2007).
    [CrossRef]
  10. L.-M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
    [CrossRef]
  11. M. A. Preciado, V. Garcia-Muñoz, and M. A. Muriel, Opt. Express 15, 7196 (2007).
    [CrossRef]
  12. M. Li, D. Janner, J. Yao, and V. Pruneri, Opt. Express 17, 19798 (2009).
    [CrossRef]
  13. M. A. Preciado and M. A. Muriel, Opt. Lett. 33, 2458 (2008).
    [CrossRef]
  14. J. Skaar, J. Opt. Soc. Am. A 18, 557 (2001).
    [CrossRef]
  15. R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
    [CrossRef]
  16. R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
    [CrossRef]

2011 (1)

2010 (1)

J. Azaña, IEEE Photon. J. 2, 359 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (6)

2006 (1)

2004 (1)

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

2001 (1)

1999 (1)

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

1995 (1)

N. Q. Ngo and L. N. Binh, Fiber Integr. Opt. 14, 359 (1995).
[CrossRef]

1993 (1)

Azaña, J.

Berger, N. K.

Binh, L. N.

N. Q. Ngo and L. N. Binh, Fiber Integr. Opt. 14, 359 (1995).
[CrossRef]

Carballar, A.

L.-M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

Consoli, A.

Esquivias, I.

Feced, R.

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

Fischer, B.

Garcia-Muñoz, V.

Janner, D.

Kam, C. H.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Kane, D. J.

Kulishov, M.

Levit, B.

Li, F.

Li, M.

Morandotti, R.

Muriel, M. A.

Ngo, N. Q.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

N. Q. Ngo and L. N. Binh, Fiber Integr. Opt. 14, 359 (1995).
[CrossRef]

Park, Y.

Plant, D. V.

Preciado, M. A.

Pruneri, V.

Rivas, L.-M.

L.-M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

Singh, K.

L.-M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

Skaar, J.

Slavik, R.

Slavík, R.

Tijero, J. M. G.

Tjin, S. C.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Trebino, R.

Yao, J.

Yu, S. F.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Zervas, M. N.

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

Fiber Integr. Opt. (1)

N. Q. Ngo and L. N. Binh, Fiber Integr. Opt. 14, 359 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[CrossRef]

IEEE Photon. J. (1)

J. Azaña, IEEE Photon. J. 2, 359 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L.-M. Rivas, K. Singh, A. Carballar, and J. Azaña, IEEE Photon. Technol. Lett. 19, 1209 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, Opt. Commun. 230, 115 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Coupling coefficient and (b) grating period of the designed FBG obtained from inverse scattering.

Fig. 2.
Fig. 2.

Comparison between the spectral response in transmission of the experimentally characterized FBG (solid blue), and the simulation results using the designed coupling coefficient κ(z) (dotted red), and the coupling coefficient with a 10% variation 0.9·κ(z) (dash–dotted green), and a 20% variation 0.8·κ(z) (dashed cyan).

Fig. 3.
Fig. 3.

Experimental setup used to prove the operation of the fabricated FBG as a differentiator. BPF, bandpass filter; EDFA amplifier.

Fig. 4.
Fig. 4.

(a) SHG-FROG traces for the input pulse and (b) differentiated output pulse.

Fig. 5.
Fig. 5.

OSA (dash–dotted green), FROG (dashed red), corrected windowed FROG (solid blue) input pulse spectral intensity, and 10-order super-Gaussian window (dotted cyan).

Fig. 6.
Fig. 6.

OSA (dash–dotted green), FROG trace (solid blue), and numerically calculated (dashed red) output pulse spectral intensity.

Fig. 7.
Fig. 7.

(a) FROG recovered temporal intensity and (b) phase of the input pulse (dashed green), ouput pulse (solid blue), and numerically calculated temporal differentiation (dash–dotted red).

Metrics