Abstract

This Letter is on wide-bandwidth electrodes suitable for ultralow voltage substrate-removed compound semiconductor electro-optic modulators. Using a loaded line approach, traveling wave electrodes suitable for wide-bandwidth and low-voltage operation were studied theoretically and experimentally up to 35 GHz. Using staircase waveguides and n-i-p-i-n epilayer designs, electrode capacitance and resistance were reduced significantly. Experimental and modeling results are found to agree very well. Theoretical and experimental results indicate that subvolt modulators with electrical to optical bandwidths in excess of 30 GHz are possible.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Noguchi, O. Mitomi, and H. Miyazawa, J. Lightwave Technol. 16, 615 (1998).
    [CrossRef]
  2. D. Chen, H. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, Appl. Phys. Lett. 70, 335 (1997).
    [CrossRef]
  3. J. Shin, S. Wu, and N. Dagli, IEEE Photon. Technol. Lett. 19, 1362 (2007).
    [CrossRef]
  4. J. Shin, Y. Chang, and N. Dagli, Appl. Phys. Lett. 92, 201103 (2008).
    [CrossRef]
  5. S. Dogru, J. Shin, and N. Dagli, in Proceedings of IEEE Photonics Society Annual Meeting (IEEE Photonics, 2011), pp. 739–740.
  6. S. Dogru and N. Dagli, in Proceedings of IEEE Photonics Society Annual Meeting (IEEE Photonics, 2012), paper MS-5.
  7. R. Spickermann, S. R. Sakamoto, and N. Dagli, Proceedings of IEEE LEOS 1996 Annual Meeting (IEEE, 1996), paper WM3.
  8. N. Dagli, IEEE Trans. Microwave Theor. Tech. 47, 1151 (1999).
  9. J. Shin, S. Sakamoto, and N. Dagli, J. Lightwave Technol. 29, 48 (2011).
    [CrossRef]
  10. G. L. Matthaei, G. C. Chinn, C. H. Plott, and N. Dagli, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11, 513 (1992).
    [CrossRef]
  11. K. Kiziloglu, N. Dagli, G. L. Matthaei, and S. I. Long, IEEE Trans. Microwave Theor. Tech. 39, 1361 (1991).
    [CrossRef]

2011 (1)

2008 (1)

J. Shin, Y. Chang, and N. Dagli, Appl. Phys. Lett. 92, 201103 (2008).
[CrossRef]

2007 (1)

J. Shin, S. Wu, and N. Dagli, IEEE Photon. Technol. Lett. 19, 1362 (2007).
[CrossRef]

1999 (1)

N. Dagli, IEEE Trans. Microwave Theor. Tech. 47, 1151 (1999).

1998 (1)

1997 (1)

D. Chen, H. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, Appl. Phys. Lett. 70, 335 (1997).
[CrossRef]

1992 (1)

G. L. Matthaei, G. C. Chinn, C. H. Plott, and N. Dagli, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11, 513 (1992).
[CrossRef]

1991 (1)

K. Kiziloglu, N. Dagli, G. L. Matthaei, and S. I. Long, IEEE Trans. Microwave Theor. Tech. 39, 1361 (1991).
[CrossRef]

Chang, Y.

J. Shin, Y. Chang, and N. Dagli, Appl. Phys. Lett. 92, 201103 (2008).
[CrossRef]

Chen, A.

D. Chen, H. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, Appl. Phys. Lett. 70, 335 (1997).
[CrossRef]

Chen, D.

D. Chen, H. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, Appl. Phys. Lett. 70, 335 (1997).
[CrossRef]

Chinn, G. C.

G. L. Matthaei, G. C. Chinn, C. H. Plott, and N. Dagli, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11, 513 (1992).
[CrossRef]

Dagli, N.

J. Shin, S. Sakamoto, and N. Dagli, J. Lightwave Technol. 29, 48 (2011).
[CrossRef]

J. Shin, Y. Chang, and N. Dagli, Appl. Phys. Lett. 92, 201103 (2008).
[CrossRef]

J. Shin, S. Wu, and N. Dagli, IEEE Photon. Technol. Lett. 19, 1362 (2007).
[CrossRef]

N. Dagli, IEEE Trans. Microwave Theor. Tech. 47, 1151 (1999).

G. L. Matthaei, G. C. Chinn, C. H. Plott, and N. Dagli, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11, 513 (1992).
[CrossRef]

K. Kiziloglu, N. Dagli, G. L. Matthaei, and S. I. Long, IEEE Trans. Microwave Theor. Tech. 39, 1361 (1991).
[CrossRef]

R. Spickermann, S. R. Sakamoto, and N. Dagli, Proceedings of IEEE LEOS 1996 Annual Meeting (IEEE, 1996), paper WM3.

S. Dogru, J. Shin, and N. Dagli, in Proceedings of IEEE Photonics Society Annual Meeting (IEEE Photonics, 2011), pp. 739–740.

S. Dogru and N. Dagli, in Proceedings of IEEE Photonics Society Annual Meeting (IEEE Photonics, 2012), paper MS-5.

Dalton, L. R.

D. Chen, H. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, Appl. Phys. Lett. 70, 335 (1997).
[CrossRef]

Dogru, S.

S. Dogru, J. Shin, and N. Dagli, in Proceedings of IEEE Photonics Society Annual Meeting (IEEE Photonics, 2011), pp. 739–740.

S. Dogru and N. Dagli, in Proceedings of IEEE Photonics Society Annual Meeting (IEEE Photonics, 2012), paper MS-5.

Fetterman, H.

D. Chen, H. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, Appl. Phys. Lett. 70, 335 (1997).
[CrossRef]

Kiziloglu, K.

K. Kiziloglu, N. Dagli, G. L. Matthaei, and S. I. Long, IEEE Trans. Microwave Theor. Tech. 39, 1361 (1991).
[CrossRef]

Long, S. I.

K. Kiziloglu, N. Dagli, G. L. Matthaei, and S. I. Long, IEEE Trans. Microwave Theor. Tech. 39, 1361 (1991).
[CrossRef]

Matthaei, G. L.

G. L. Matthaei, G. C. Chinn, C. H. Plott, and N. Dagli, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11, 513 (1992).
[CrossRef]

K. Kiziloglu, N. Dagli, G. L. Matthaei, and S. I. Long, IEEE Trans. Microwave Theor. Tech. 39, 1361 (1991).
[CrossRef]

Mitomi, O.

Miyazawa, H.

Noguchi, K.

Plott, C. H.

G. L. Matthaei, G. C. Chinn, C. H. Plott, and N. Dagli, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11, 513 (1992).
[CrossRef]

Sakamoto, S.

Sakamoto, S. R.

R. Spickermann, S. R. Sakamoto, and N. Dagli, Proceedings of IEEE LEOS 1996 Annual Meeting (IEEE, 1996), paper WM3.

Shi, Y.

D. Chen, H. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, Appl. Phys. Lett. 70, 335 (1997).
[CrossRef]

Shin, J.

J. Shin, S. Sakamoto, and N. Dagli, J. Lightwave Technol. 29, 48 (2011).
[CrossRef]

J. Shin, Y. Chang, and N. Dagli, Appl. Phys. Lett. 92, 201103 (2008).
[CrossRef]

J. Shin, S. Wu, and N. Dagli, IEEE Photon. Technol. Lett. 19, 1362 (2007).
[CrossRef]

S. Dogru, J. Shin, and N. Dagli, in Proceedings of IEEE Photonics Society Annual Meeting (IEEE Photonics, 2011), pp. 739–740.

Spickermann, R.

R. Spickermann, S. R. Sakamoto, and N. Dagli, Proceedings of IEEE LEOS 1996 Annual Meeting (IEEE, 1996), paper WM3.

Steier, W. H.

D. Chen, H. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, Appl. Phys. Lett. 70, 335 (1997).
[CrossRef]

Wang, W.

D. Chen, H. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, Appl. Phys. Lett. 70, 335 (1997).
[CrossRef]

Wu, S.

J. Shin, S. Wu, and N. Dagli, IEEE Photon. Technol. Lett. 19, 1362 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

J. Shin, Y. Chang, and N. Dagli, Appl. Phys. Lett. 92, 201103 (2008).
[CrossRef]

D. Chen, H. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, Appl. Phys. Lett. 70, 335 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Shin, S. Wu, and N. Dagli, IEEE Photon. Technol. Lett. 19, 1362 (2007).
[CrossRef]

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (1)

G. L. Matthaei, G. C. Chinn, C. H. Plott, and N. Dagli, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11, 513 (1992).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (2)

K. Kiziloglu, N. Dagli, G. L. Matthaei, and S. I. Long, IEEE Trans. Microwave Theor. Tech. 39, 1361 (1991).
[CrossRef]

N. Dagli, IEEE Trans. Microwave Theor. Tech. 47, 1151 (1999).

J. Lightwave Technol. (2)

Other (3)

S. Dogru, J. Shin, and N. Dagli, in Proceedings of IEEE Photonics Society Annual Meeting (IEEE Photonics, 2011), pp. 739–740.

S. Dogru and N. Dagli, in Proceedings of IEEE Photonics Society Annual Meeting (IEEE Photonics, 2012), paper MS-5.

R. Spickermann, S. R. Sakamoto, and N. Dagli, Proceedings of IEEE LEOS 1996 Annual Meeting (IEEE, 1996), paper WM3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cross sectional profile of the staircase waveguide or phase modulator within an n-i-p-i-n epilayer. Its electrical equivalent circuit is also shown.

Fig. 2.
Fig. 2.

Top and cross sectional schematics of the modulator electrode using the phase modulator shown in Fig. 1.

Fig. 3.
Fig. 3.

Electrical equivalent circuit of the traveling wave electrode. Shaded boxes designate the admittance of short modulator sections shown in Fig. 1.

Fig. 4.
Fig. 4.

IV and CV measurement results of a 2 mm long electrode.

Fig. 5.
Fig. 5.

Measured electrical loss and modulator response under zero bias based on electrode data along with calculation results.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M(f)=e(αl2)[sinh2(αl2)+sin2(ξl2)(αl2)2+(ξl2)2]12,ξ=2πf(1vph1vo).

Metrics