Abstract

Dual-wavelength noiselike pulses are generated in a fiber ring laser. A first series of pulses is induced at a wavelength of 1550 nm by the interplay of an erbium-doped fiber and nonlinear polarization rotation. From the Raman gain of these pump pulses emerges a second series of Stokes pulses at 1650 nm. With adequate control of the polarization states in the cavity, the noiselike Stokes pulses extend over 84 nm in the Ultralong-wavelengths band (U-band), while the pump pulses span over 46 nm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Matsas, T. Newson, and M. Zervas, Opt. Commun. 92, 61 (1992).
    [CrossRef]
  2. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, J. Lightwave Technol. 22, 51 (2004).
    [CrossRef]
  3. M. Horowitz, Y. Barad, and Y. Silberberg, Opt. Lett. 22, 799 (1997).
    [CrossRef]
  4. M. Horowitz and Y. Silberberg, IEEE Photon. Technol. Lett. 10, 1389 (1998).
    [CrossRef]
  5. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, Opt. Express 17, 20707 (2009).
    [CrossRef]
  6. S. Kobtsev, S. Kukarin, and Y. Fedotov, Opt. Express 16, 21936 (2008).
    [CrossRef]
  7. J. Kang, Opt. Commun. 182, 433 (2000).
    [CrossRef]
  8. L. Zhao, D. Tang, T. Cheng, H. Tam, and C. Lu, Opt. Commun. 281, 157 (2008).
    [CrossRef]
  9. L. A. Vazquez-Zuniga and Y. Jeong, IEEE Photon. Technol. Lett. 24, 1549 (2012).
    [CrossRef]
  10. S. Keren, E. Brand, Y. Levi, B. Levit, and M. Horowitz, Opt. Lett. 27, 125 (2002).
    [CrossRef]
  11. V. Goloborodko, S. Keren, A. Rosenthal, B. Levit, and M. Horowitz, Appl. Opt. 42, 2284 (2003).
    [CrossRef]
  12. S. Keren and M. Horowitz, Opt. Lett. 26, 328 (2001).
    [CrossRef]
  13. S. Keren, A. Rosenthal, and M. Horowitz, IEEE Photon. Technol. Lett. 15, 575 (2003).
    [CrossRef]
  14. Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, Electron. Lett. 41, 399 (2005).
    [CrossRef]
  15. J. Hernandez-Garcia, O. Pottiez, J. Estudillo-Ayala, and R. Rojas-Laguna, Opt. Commun. 285, 1915 (2012).
    [CrossRef]
  16. G. Agrawal, Nonlinear Fiber Optics, Optics and Photonics (Academic, 2007).
  17. O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, Appl. Opt. 50, E24 (2011).
    [CrossRef]

2012 (2)

L. A. Vazquez-Zuniga and Y. Jeong, IEEE Photon. Technol. Lett. 24, 1549 (2012).
[CrossRef]

J. Hernandez-Garcia, O. Pottiez, J. Estudillo-Ayala, and R. Rojas-Laguna, Opt. Commun. 285, 1915 (2012).
[CrossRef]

2011 (1)

2009 (1)

2008 (2)

S. Kobtsev, S. Kukarin, and Y. Fedotov, Opt. Express 16, 21936 (2008).
[CrossRef]

L. Zhao, D. Tang, T. Cheng, H. Tam, and C. Lu, Opt. Commun. 281, 157 (2008).
[CrossRef]

2005 (1)

Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, Electron. Lett. 41, 399 (2005).
[CrossRef]

2004 (1)

2003 (2)

V. Goloborodko, S. Keren, A. Rosenthal, B. Levit, and M. Horowitz, Appl. Opt. 42, 2284 (2003).
[CrossRef]

S. Keren, A. Rosenthal, and M. Horowitz, IEEE Photon. Technol. Lett. 15, 575 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (1)

J. Kang, Opt. Commun. 182, 433 (2000).
[CrossRef]

1998 (1)

M. Horowitz and Y. Silberberg, IEEE Photon. Technol. Lett. 10, 1389 (1998).
[CrossRef]

1997 (1)

1992 (1)

V. Matsas, T. Newson, and M. Zervas, Opt. Commun. 92, 61 (1992).
[CrossRef]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, Optics and Photonics (Academic, 2007).

Barad, Y.

Brand, E.

Cheng, T.

L. Zhao, D. Tang, T. Cheng, H. Tam, and C. Lu, Opt. Commun. 281, 157 (2008).
[CrossRef]

Estudillo-Ayala, J.

J. Hernandez-Garcia, O. Pottiez, J. Estudillo-Ayala, and R. Rojas-Laguna, Opt. Commun. 285, 1915 (2012).
[CrossRef]

Fedotov, Y.

Goloborodko, V.

Grajales-Coutiño, R.

Hernandez-Garcia, J.

J. Hernandez-Garcia, O. Pottiez, J. Estudillo-Ayala, and R. Rojas-Laguna, Opt. Commun. 285, 1915 (2012).
[CrossRef]

Hernández-García, J. C.

Horowitz, M.

Ibarra-Escamilla, B.

Jablonski, M.

Jeong, Y.

L. A. Vazquez-Zuniga and Y. Jeong, IEEE Photon. Technol. Lett. 24, 1549 (2012).
[CrossRef]

Kang, J.

J. Kang, Opt. Commun. 182, 433 (2000).
[CrossRef]

Keren, S.

Kikuchi, K.

Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, Electron. Lett. 41, 399 (2005).
[CrossRef]

Kobtsev, S.

Kukarin, S.

Kuzin, E. A.

Latkin, A.

Levi, Y.

Levit, B.

Lu, C.

L. Zhao, D. Tang, T. Cheng, H. Tam, and C. Lu, Opt. Commun. 281, 157 (2008).
[CrossRef]

Matsas, V.

V. Matsas, T. Newson, and M. Zervas, Opt. Commun. 92, 61 (1992).
[CrossRef]

Newson, T.

V. Matsas, T. Newson, and M. Zervas, Opt. Commun. 92, 61 (1992).
[CrossRef]

Ozeki, Y.

Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, Electron. Lett. 41, 399 (2005).
[CrossRef]

Pottiez, O.

J. Hernandez-Garcia, O. Pottiez, J. Estudillo-Ayala, and R. Rojas-Laguna, Opt. Commun. 285, 1915 (2012).
[CrossRef]

O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, Appl. Opt. 50, E24 (2011).
[CrossRef]

Rojas-Laguna, R.

J. Hernandez-Garcia, O. Pottiez, J. Estudillo-Ayala, and R. Rojas-Laguna, Opt. Commun. 285, 1915 (2012).
[CrossRef]

Rosenthal, A.

V. Goloborodko, S. Keren, A. Rosenthal, B. Levit, and M. Horowitz, Appl. Opt. 42, 2284 (2003).
[CrossRef]

S. Keren, A. Rosenthal, and M. Horowitz, IEEE Photon. Technol. Lett. 15, 575 (2003).
[CrossRef]

Set, S. Y.

Silberberg, Y.

M. Horowitz and Y. Silberberg, IEEE Photon. Technol. Lett. 10, 1389 (1998).
[CrossRef]

M. Horowitz, Y. Barad, and Y. Silberberg, Opt. Lett. 22, 799 (1997).
[CrossRef]

Smirnov, S.

Takushima, Y.

Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, Electron. Lett. 41, 399 (2005).
[CrossRef]

Tam, H.

L. Zhao, D. Tang, T. Cheng, H. Tam, and C. Lu, Opt. Commun. 281, 157 (2008).
[CrossRef]

Tanaka, Y.

Tang, D.

L. Zhao, D. Tang, T. Cheng, H. Tam, and C. Lu, Opt. Commun. 281, 157 (2008).
[CrossRef]

Turitsyn, S.

Vazquez-Zuniga, L. A.

L. A. Vazquez-Zuniga and Y. Jeong, IEEE Photon. Technol. Lett. 24, 1549 (2012).
[CrossRef]

Yaguchi, H.

Yasunaka, K.

Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, Electron. Lett. 41, 399 (2005).
[CrossRef]

Zervas, M.

V. Matsas, T. Newson, and M. Zervas, Opt. Commun. 92, 61 (1992).
[CrossRef]

Zhao, L.

L. Zhao, D. Tang, T. Cheng, H. Tam, and C. Lu, Opt. Commun. 281, 157 (2008).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

Y. Takushima, K. Yasunaka, Y. Ozeki, and K. Kikuchi, Electron. Lett. 41, 399 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Horowitz and Y. Silberberg, IEEE Photon. Technol. Lett. 10, 1389 (1998).
[CrossRef]

L. A. Vazquez-Zuniga and Y. Jeong, IEEE Photon. Technol. Lett. 24, 1549 (2012).
[CrossRef]

S. Keren, A. Rosenthal, and M. Horowitz, IEEE Photon. Technol. Lett. 15, 575 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (4)

V. Matsas, T. Newson, and M. Zervas, Opt. Commun. 92, 61 (1992).
[CrossRef]

J. Kang, Opt. Commun. 182, 433 (2000).
[CrossRef]

L. Zhao, D. Tang, T. Cheng, H. Tam, and C. Lu, Opt. Commun. 281, 157 (2008).
[CrossRef]

J. Hernandez-Garcia, O. Pottiez, J. Estudillo-Ayala, and R. Rojas-Laguna, Opt. Commun. 285, 1915 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (1)

G. Agrawal, Nonlinear Fiber Optics, Optics and Photonics (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Ring cavity composed of an HNLF, an EDFA, two PCs, a PBS, and two output tap couplers O1,2. EDFA, erbium-doped fiber amplifier; PC, polarization controller; PBS, polarization beam splitter.

Fig. 2.
Fig. 2.

(a) Dual-wavelength lasing at O2 at various EDFA pump powers. Inset: PD response of the RP pulses of trace (h). (b) Other PC configurations. The spectral offset between the pump and the Stokes pulses are denoted by Ω1,2. Insets: corresponding PD intensity response.

Fig. 3.
Fig. 3.

FROG spectrogram of a NLP and its autocorrelation width of 25.6 ps.

Fig. 4.
Fig. 4.

Effect of a variation of the EDFA pump power. (a) Power at the rejection port and in the cavity, observed from output coupler O2, (b) spectral width at the RP and Stokes pulses and autocorrelation width for the RP pulses, (c) pulses’ spectral energy as the EDFA pump power is decreased.

Fig. 5.
Fig. 5.

Time-domain behavior at two different time scales. PD, photodiode.

Metrics