Abstract

Phase-sensitive optical time-domain reflectometry (ϕOTDR) is a simple and effective tool allowing the distributed monitoring of vibrations along single-mode fibers. We show in this Letter that modulation instability (MI) can induce a position-dependent signal fading in long-range ϕOTDR over conventional optical fibers. This fading leads to a complete masking of the interference signal recorded at certain positions and therefore to a sensitivity loss at these positions. We illustrate this effect both theoretically and experimentally. While this effect is detrimental in the context of distributed vibration analysis using ϕOTDR, we also believe that the technique provides a clear and insightful way to evidence the Fermi–Pasta–Ulam recurrence associated with the MI process.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. L. Lu, T. Zhu, L. A. Chen, and X. Y. Bao, J. Lightwave Technol. 28, 3243 (2010).
    [CrossRef]
  2. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, J. Lightwave Technol. 23, 2081 (2005).
    [CrossRef]
  3. H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, J. Lightwave Technol. 12, 1230 (1994).
    [CrossRef]
  4. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  5. G. Van Simaeys, P. Emplit, and M. Haelterman, J. Opt. Soc. Am. B 19, 477 (2002).
    [CrossRef]
  6. G. Van Simaeys, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 87, 033902 (2001).
    [CrossRef]
  7. D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, Proc. Soc. Photo-Opt. Instrum. Eng. 5855, 587 (2005).
    [CrossRef]

2010 (1)

2005 (2)

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, J. Lightwave Technol. 23, 2081 (2005).
[CrossRef]

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, Proc. Soc. Photo-Opt. Instrum. Eng. 5855, 587 (2005).
[CrossRef]

2002 (1)

2001 (1)

G. Van Simaeys, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 87, 033902 (2001).
[CrossRef]

1994 (1)

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, J. Lightwave Technol. 12, 1230 (1994).
[CrossRef]

Abrardi, L.

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, Proc. Soc. Photo-Opt. Instrum. Eng. 5855, 587 (2005).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Alasia, D.

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, Proc. Soc. Photo-Opt. Instrum. Eng. 5855, 587 (2005).
[CrossRef]

Bao, X. Y.

Chen, L. A.

Choi, K. N.

Emplit, P.

G. Van Simaeys, P. Emplit, and M. Haelterman, J. Opt. Soc. Am. B 19, 477 (2002).
[CrossRef]

G. Van Simaeys, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 87, 033902 (2001).
[CrossRef]

Furukawa, S.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, J. Lightwave Technol. 12, 1230 (1994).
[CrossRef]

Haelterman, M.

G. Van Simaeys, P. Emplit, and M. Haelterman, J. Opt. Soc. Am. B 19, 477 (2002).
[CrossRef]

G. Van Simaeys, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 87, 033902 (2001).
[CrossRef]

Herraez, M. G.

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, Proc. Soc. Photo-Opt. Instrum. Eng. 5855, 587 (2005).
[CrossRef]

Izumita, H.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, J. Lightwave Technol. 12, 1230 (1994).
[CrossRef]

Juarez, J. C.

Koyamada, Y.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, J. Lightwave Technol. 12, 1230 (1994).
[CrossRef]

Lopez, S. M.

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, Proc. Soc. Photo-Opt. Instrum. Eng. 5855, 587 (2005).
[CrossRef]

Lu, Y. L.

Maier, E. W.

Sankawa, I.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, J. Lightwave Technol. 12, 1230 (1994).
[CrossRef]

Taylor, H. F.

Thevenaz, L.

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, Proc. Soc. Photo-Opt. Instrum. Eng. 5855, 587 (2005).
[CrossRef]

Van Simaeys, G.

G. Van Simaeys, P. Emplit, and M. Haelterman, J. Opt. Soc. Am. B 19, 477 (2002).
[CrossRef]

G. Van Simaeys, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 87, 033902 (2001).
[CrossRef]

Zhu, T.

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Phys. Rev. Lett. (1)

G. Van Simaeys, P. Emplit, and M. Haelterman, Phys. Rev. Lett. 87, 033902 (2001).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

D. Alasia, M. G. Herraez, L. Abrardi, S. M. Lopez, and L. Thevenaz, Proc. Soc. Photo-Opt. Instrum. Eng. 5855, 587 (2005).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. Acronyms are explained in the text.

Fig. 2.
Fig. 2.

ϕOTDR signal along the fiber under test (FUT) for an input pump peak power of 1.25W (main figure) and 0.35W (inset figure). Fiber losses have been eliminated along the trace to improve visualization. The theoretical fraction of power contained in the central wavelength is also presented in both cases. The top figure shows the visibility of the ϕOTDR interference signal for the main figure signal. The visibility is computed as V=(TmaxTmin)/(Tmax+Tmin), where Tmax and Tmin are the maximum and minimum values of the trace over a certain distance record (in our case, a window of 40 m).

Fig. 3.
Fig. 3.

Normalized optical power of the peak and sidebands at the end of the fiber for different input pump powers. Inset figures: spectrum for input pump powers of (a) 24.5, (b) 27.8, and (c) 28.8 dBm.

Fig. 4.
Fig. 4.

Simulation of the input pulse spectrum evolution along the fiber using the parameters of the main figure of Fig. 2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Az+iβ222At2β363At3+α2A=iγ|A|2A.

Metrics