Abstract

A compact directional coupler fabricated on a silicon photonic platform is presented, with a power-splitting ratio that can be tuned through a transverse temperature gradient induced by a laterally shifted integrated heater. The tuning mechanism exploits the thermally induced phase velocity mismatch between the coupled modes of the silicon waveguides. The positions of the integrated heater and the waveguide design are optimized to maximize the tuning range and to reduce electric power consumption. Asynchronous devices with an intrinsic phase mismatch are demonstrated to be more efficient, providing a tunable coupled power from 0.7 to 0.01 with 36 mW maximum power dissipation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. L. R. Lira, C. B. Poitras, and M. Lipson, Opt. Express 19, 20115 (2011).
    [CrossRef]
  2. P. Orlandi, C. Ferrari, M. J. Strain, A. Canciamilla, F. Morichetti, M. Sorel, P. Bassi, and A. Melloni, Opt. Lett. 37, 3669 (2012).
    [CrossRef]
  3. M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, J. Lightwave Technol. 27, 2105 (2009).
    [CrossRef]
  4. E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, Photon. Technol. Lett. 22, 109 (2010).
    [CrossRef]
  5. L. Luo, S. Ibrahim, A. Nitkowski, Z. Ding, C. B. Poitras, S. J. Ben Yoo, and M. Lipson, Opt. Express 18, 23079 (2010).
    [CrossRef]
  6. H. Kogelnik and R. V. Schmidt, IEEE J. Quantum Electron. 12, 396 (1976).
    [CrossRef]
  7. Y. Silberberg, P. Perlmutter, and J. E. Baran, Appl. Phys. Lett. 51, 1230 (1987).
    [CrossRef]
  8. J. Leuthold and C. H. Joyner, J. Lightwave Technol. 19, 700 (2001).
    [CrossRef]
  9. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010).
    [CrossRef]
  10. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007), p. 614.
  11. O. Schwelb, J. Lightwave Technol. 22, 1380 (2004).
    [CrossRef]
  12. V. M. N. Passaro, F. Magno, and A. V. Tsarev, Opt. Express 13, 3429 (2005).
    [CrossRef]
  13. A. H. Atabaki, E. S. Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, Opt. Express 18, 18312 (2010).
    [CrossRef]
  14. G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
    [CrossRef]

2012

2011

2010

A. H. Atabaki, E. S. Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, Opt. Express 18, 18312 (2010).
[CrossRef]

L. Luo, S. Ibrahim, A. Nitkowski, Z. Ding, C. B. Poitras, S. J. Ben Yoo, and M. Lipson, Opt. Express 18, 23079 (2010).
[CrossRef]

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, Photon. Technol. Lett. 22, 109 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010).
[CrossRef]

2009

2005

2004

2001

1999

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

1987

Y. Silberberg, P. Perlmutter, and J. E. Baran, Appl. Phys. Lett. 51, 1230 (1987).
[CrossRef]

1976

H. Kogelnik and R. V. Schmidt, IEEE J. Quantum Electron. 12, 396 (1976).
[CrossRef]

Adibi, A.

Atabaki, A. H.

Baran, J. E.

Y. Silberberg, P. Perlmutter, and J. E. Baran, Appl. Phys. Lett. 51, 1230 (1987).
[CrossRef]

Bassi, P.

Beals, M.

Beattie, J.

Ben Yoo, S. J.

Canciamilla, A.

P. Orlandi, C. Ferrari, M. J. Strain, A. Canciamilla, F. Morichetti, M. Sorel, P. Bassi, and A. Melloni, Opt. Lett. 37, 3669 (2012).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010).
[CrossRef]

Carothers, D.

Chen, Y.-K.

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

Coldren, L. A.

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, Photon. Technol. Lett. 22, 109 (2010).
[CrossRef]

De La Rue, R.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010).
[CrossRef]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

Ding, Z.

Eftekhar, A. A.

Ferrari, C.

P. Orlandi, C. Ferrari, M. J. Strain, A. Canciamilla, F. Morichetti, M. Sorel, P. Bassi, and A. Melloni, Opt. Lett. 37, 3669 (2012).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010).
[CrossRef]

Gill, D. M.

Guzzon, R. S.

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, Photon. Technol. Lett. 22, 109 (2010).
[CrossRef]

Hosseini, E. S.

Ibrahim, S.

Joyner, C. H.

Kimerling, L. C.

Kogelnik, H.

H. Kogelnik and R. V. Schmidt, IEEE J. Quantum Electron. 12, 396 (1976).
[CrossRef]

Krauss, T. F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010).
[CrossRef]

Leuthold, J.

Lipson, M.

Lira, H. L. R.

Luo, L.

Magno, F.

Melloni, A.

P. Orlandi, C. Ferrari, M. J. Strain, A. Canciamilla, F. Morichetti, M. Sorel, P. Bassi, and A. Melloni, Opt. Lett. 37, 3669 (2012).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010).
[CrossRef]

Michel, J.

Morichetti, F.

P. Orlandi, C. Ferrari, M. J. Strain, A. Canciamilla, F. Morichetti, M. Sorel, P. Bassi, and A. Melloni, Opt. Lett. 37, 3669 (2012).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010).
[CrossRef]

Nicholes, S. C.

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, Photon. Technol. Lett. 22, 109 (2010).
[CrossRef]

Nitkowski, A.

Norberg, E. J.

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, Photon. Technol. Lett. 22, 109 (2010).
[CrossRef]

O’Faolain, L.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010).
[CrossRef]

Orlandi, P.

Parker, J. S.

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, Photon. Technol. Lett. 22, 109 (2010).
[CrossRef]

Passaro, V. M. N.

Patel, S. S.

Perlmutter, P.

Y. Silberberg, P. Perlmutter, and J. E. Baran, Appl. Phys. Lett. 51, 1230 (1987).
[CrossRef]

Poitras, C. B.

Pomerene, A.

Rasras, M. S.

Rendina, I.

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

Samarelli, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010).
[CrossRef]

Schmidt, R. V.

H. Kogelnik and R. V. Schmidt, IEEE J. Quantum Electron. 12, 396 (1976).
[CrossRef]

Schwelb, O.

Silberberg, Y.

Y. Silberberg, P. Perlmutter, and J. E. Baran, Appl. Phys. Lett. 51, 1230 (1987).
[CrossRef]

Sorel, M.

P. Orlandi, C. Ferrari, M. J. Strain, A. Canciamilla, F. Morichetti, M. Sorel, P. Bassi, and A. Melloni, Opt. Lett. 37, 3669 (2012).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010).
[CrossRef]

Strain, M. J.

Tsarev, A. V.

Tu, K.-Y.

White, A. E.

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007), p. 614.

Yegnanarayanan, S.

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007), p. 614.

Appl. Phys. Lett.

Y. Silberberg, P. Perlmutter, and J. E. Baran, Appl. Phys. Lett. 51, 1230 (1987).
[CrossRef]

G. Cocorullo, F. G. Della Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
[CrossRef]

IEEE J. Quantum Electron.

H. Kogelnik and R. V. Schmidt, IEEE J. Quantum Electron. 12, 396 (1976).
[CrossRef]

IEEE Photonics J.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, IEEE Photonics J. 2, 181 (2010).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Photon. Technol. Lett.

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, Photon. Technol. Lett. 22, 109 (2010).
[CrossRef]

Other

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007), p. 614.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Sketch of the TDC cross section. (b) Optical microscope top-view photograph of a silicon TDC embedded in an integrated RR all-pass filter. (c) 2D thermal FEM simulation of the silicon TDC cross section.

Fig. 2.
Fig. 2.

Wavelength domain response of an RR all-pass filter for increasing power PD dissipated in the TDC: overcoupling (PD=0, K=0.7, blue curve T1), critical coupling (PD=30.4, K=0.06, red curve T2), and undercoupling condition (PD=33.9, K=0.022, green curve T3).

Fig. 3.
Fig. 3.

(a) Normalized thermally induced effective index difference versus d for three TDCs with g=200nm (blue curve), 250 nm (red curve), and 300 nm (black curve). The coupling length Lc is chosen to have K=1 for PD=0. Heater temperatures Th refer to the case d=0.6μm. (b) Measured K of three synchronous TDCs with g=300nm and Lc=74μm for d=0.3μm (green circles), 0 μm (blue circles), and 0.6 μm (black circles).

Fig. 4.
Fig. 4.

Measured K versus PD of four synchronous TDCs with nominal K=1 (squares, g=200 and 250 nm) and K=0.5 (circles, g=200 and 300 nm). The heater offset is d=0.6μm.

Fig. 5.
Fig. 5.

Measured (circles) and simulated (solid curves) K versus PD of three synchronous TDCs with coupling length Lc=52μm (blue), 57 μm (orange), and 74 μm (black). Diamonds and the dashed–dotted line show the performance of an asynchronous TDC (Δn=0.006) with Lc=74μm. All the devices have g=300nm and d=0.6μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

K=|κ|2S2sin2(SLc),

Metrics