Abstract

We report the generation of passively harmonic mode-locked pulses using a 1.06 μm semiconductor optical amplifier (SOA) in a figure-eight laser configuration operated in the all-normal-dispersion regime. Different orders of harmonic mode-locking can be obtained from 30 MHz to 12.02 GHz by changing the injection current of the SOA from 80 to 660 mA together with the adjustment of polarization controllers. The highest pulse repetition rate increases almost linearly with the SOA current. As SOA current is set to 660 mA, we obtain the intracavity power of 46 mW at the highest repetition rate of 12.02 GHz, corresponding to the 1202th harmonic of the fundamental mode-locking frequency. To our best knowledge, this is the lowest intracavity power to generate the highest repetition rate with a passively mode-locked laser in the all-normal-dispersion regime.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, Opt. Express 16, 7055 (2008).
    [CrossRef]
  2. D. Ma, Y. Cai, C. Zhou, W. J. Zong, L. L. Chen, and Z. G. Zhang, Opt. Lett. 35, 2858 (2010).
    [CrossRef]
  3. O. Wada, New J. Phys. 6, 183 (2004).
    [CrossRef]
  4. A. B. Grudinin, D. J. Richardson, and D. N. Payne, Electron. Lett. 29, 1860 (1993).
    [CrossRef]
  5. G. R. Lin, Y. C. Chang, and J. R. Wu, IEEE Photon. Technol. Lett. 16, 1810 (2004).
    [CrossRef]
  6. M. J. Guy, D. U. Noske, and J. R. Taylor, Opt. Lett. 18, 1447 (1993).
    [CrossRef]
  7. S. Zhou, D. G. Ouzounov, and F. W. Wise, Opt. Lett. 31, 1041 (2006).
    [CrossRef]
  8. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, Ph. Grelu, and F. Sanchez, Opt. Lett. 34, 2120 (2009).
    [CrossRef]
  9. G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, Opt. Commun. 284, 4203 (2011).
    [CrossRef]
  10. G. R. Lin, Y. C. Lin, K. C. Lin, W. Y. Lee, and C. L. Wu, Opt. Express 18, 9525 (2010).
    [CrossRef]
  11. X. Yang, Z. Li, E. Tangdiongga, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, Opt. Express 12, 2448 (2004).
    [CrossRef]
  12. S. S. Min, Y. C. Zhao, and S. M. Fleming, Opt. Express 17, 6187 (2009).
    [CrossRef]
  13. L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Lasers (CRC, 2010).
  14. A. B. Grudinin and S. Gray, J. Opt. Soc. Am. B 14, 144 (1997).
    [CrossRef]

2011

G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, Opt. Commun. 284, 4203 (2011).
[CrossRef]

2010

2009

2008

2006

2004

X. Yang, Z. Li, E. Tangdiongga, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, Opt. Express 12, 2448 (2004).
[CrossRef]

O. Wada, New J. Phys. 6, 183 (2004).
[CrossRef]

G. R. Lin, Y. C. Chang, and J. R. Wu, IEEE Photon. Technol. Lett. 16, 1810 (2004).
[CrossRef]

1997

1993

M. J. Guy, D. U. Noske, and J. R. Taylor, Opt. Lett. 18, 1447 (1993).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, Electron. Lett. 29, 1860 (1993).
[CrossRef]

Abramski, K. M.

G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, Opt. Commun. 284, 4203 (2011).
[CrossRef]

Amrani, F.

Binh, L. N.

L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Lasers (CRC, 2010).

Cai, Y.

Chang, Y. C.

G. R. Lin, Y. C. Chang, and J. R. Wu, IEEE Photon. Technol. Lett. 16, 1810 (2004).
[CrossRef]

Chen, L. L.

Dorren, H. J. S.

Fleming, S. M.

Gray, S.

Grelu, Ph.

Grudinin, A. B.

A. B. Grudinin and S. Gray, J. Opt. Soc. Am. B 14, 144 (1997).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, Electron. Lett. 29, 1860 (1993).
[CrossRef]

Guy, M. J.

Haboucha, A.

Kaczmarek, P.

G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, Opt. Commun. 284, 4203 (2011).
[CrossRef]

Khoe, G. D.

Kobayashi, Y.

Komarov, A.

Krzempek, K.

G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, Opt. Commun. 284, 4203 (2011).
[CrossRef]

Leblond, H.

Lee, W. Y.

Lenstra, D.

Li, Z.

Lin, G. R.

G. R. Lin, Y. C. Lin, K. C. Lin, W. Y. Lee, and C. L. Wu, Opt. Express 18, 9525 (2010).
[CrossRef]

G. R. Lin, Y. C. Chang, and J. R. Wu, IEEE Photon. Technol. Lett. 16, 1810 (2004).
[CrossRef]

Lin, K. C.

Lin, Y. C.

Ma, D.

Min, S. S.

Ngo, N. Q.

L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Lasers (CRC, 2010).

Nikodem, M.

G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, Opt. Commun. 284, 4203 (2011).
[CrossRef]

Noske, D. U.

Ouzounov, D. G.

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, Electron. Lett. 29, 1860 (1993).
[CrossRef]

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, Electron. Lett. 29, 1860 (1993).
[CrossRef]

Salhi, M.

Sanchez, F.

Sobon, G.

G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, Opt. Commun. 284, 4203 (2011).
[CrossRef]

Tangdiongga, E.

Taylor, J. R.

Torizuka, K.

Wada, O.

O. Wada, New J. Phys. 6, 183 (2004).
[CrossRef]

Wise, F. W.

Wu, C. L.

Wu, J. R.

G. R. Lin, Y. C. Chang, and J. R. Wu, IEEE Photon. Technol. Lett. 16, 1810 (2004).
[CrossRef]

Yang, X.

Yoshitomi, D.

Zhang, Z. G.

Zhao, Y. C.

Zhou, C.

Zhou, S.

Zhou, X.

Zong, W. J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic setup of the figure-eight SOA-based fiber laser.

Fig. 2.
Fig. 2.

Repetition rates and average output powers of figure-eight SOA-based fiber laser under different SOA injection currents. The half-circles and filled circles represent the highest and the lower repetition rate obtained under a fixed pump current: (a) is the RF spectrum around the maximum repetition rate of 12.02 GHz (first beat note) and (b) is the RF spectrum for the 26 GHz scanning range.

Fig. 3.
Fig. 3.

Output spectra of the figure-eight SOA-based fiber laser under different SOA injection currents.

Fig. 4.
Fig. 4.

(a) Pulse energy and (b) pulse duration and peak power of HML pulses for different SOA pump currents.

Fig. 5.
Fig. 5.

Measured mode-locked pulses (solid line) and Gaussian curve fitting (dashed line). The inset shows the pulse train of the mode-locked laser pulses.

Fig. 6.
Fig. 6.

(a) Autocorrelation trace of the mode-locked pulses (black line) and Gaussian curve fitting (red line). (b) The RF spectrum of 8.1 GHz HML pulses with 50 kHz scanning range. Inset in (b): RF spectrum for the 26 GHz scanning range.

Metrics