Abstract

Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, Opt. Express 20, 10870 (2012).
    [CrossRef]
  2. A. Harth, M. Schultze, T. Lang, T. Binhammer, S. Rausch, and U. Morgner, Opt. Express 20, 3076 (2012).
    [CrossRef]
  3. S. Hädrich, S. Demmler, J. Rothhardt, C. Jocher, J. Limpert, and A. Tünnermann, Opt. Lett. 36, 313 (2011).
    [CrossRef]
  4. S. Demmler, J. Rothhardt, S. Hädrich, J. Bromage, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 3933 (2012).
    [CrossRef]
  5. A. Baltuška, T. Fuji, and T. Kobayashi, Opt. Lett. 27, 306 (2002).
    [CrossRef]
  6. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, J. Opt. 12, 013001 (2010).
    [CrossRef]
  7. A. Dubietis, R. Butkus, and A. Piskarskas, IEEE J. Sel. Top. Quantum Electron. 12, 163 (2006).
    [CrossRef]
  8. S. Hädrich, J. Rothhardt, F. Röser, T. Gottschall, J. Limpert, and A. Tünnermann, Opt. Express 16, 19812 (2008).
    [CrossRef]
  9. J. Rothhardt, S. Hädrich, E. Seise, M. Krebs, F. Tavella, A. Willner, S. Düsterer, H. Schlarb, J. Feldhaus, J. Limpert, J. Rossbach, and A. Tünnermann, Opt. Express 18, 12719 (2010).
    [CrossRef]
  10. G. Sansone, F. Calegari, and M. Nisoli, IEEE J. Sel. Top. Quantum Electron. 18, 507 (2012).
    [CrossRef]
  11. S. T. Lin, Y. Y. Lin, Y. C. Huang, A. C. Chiang, and J. T. Shy, Opt. Lett. 33, 2338 (2008).
    [CrossRef]
  12. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2009).
    [CrossRef]
  13. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2010).
  14. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
    [CrossRef]
  15. D. Eimerl, S. Velsko, L. Davis, and F. Wang, Prog. Cryst. Growth Charact. Mater. 20, 59 (1990).
    [CrossRef]
  16. S. C. Sabharwal, M. Goswami, S. K. Kulkarni, and B. D. Padalia, J. Mater. Sci. 11, 325 (2000).
    [CrossRef]
  17. J. D. Beasley, Appl. Opt. 33, 1000 (1994).
    [CrossRef]
  18. Z. M. Liao, I. Jovanovic, C. A. Ebbers, Y. Fei, and B. Chai, Opt. Lett. 31, 1277 (2006).
    [CrossRef]
  19. H. Kouta and Y. Kuwano, Opt. Lett. 24, 1230 (1999).
    [CrossRef]
  20. R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1046 (1998).
    [CrossRef]

2012 (4)

2011 (1)

2010 (2)

2009 (1)

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2009).
[CrossRef]

2008 (2)

2006 (2)

Z. M. Liao, I. Jovanovic, C. A. Ebbers, Y. Fei, and B. Chai, Opt. Lett. 31, 1277 (2006).
[CrossRef]

A. Dubietis, R. Butkus, and A. Piskarskas, IEEE J. Sel. Top. Quantum Electron. 12, 163 (2006).
[CrossRef]

2002 (1)

2000 (1)

S. C. Sabharwal, M. Goswami, S. K. Kulkarni, and B. D. Padalia, J. Mater. Sci. 11, 325 (2000).
[CrossRef]

1999 (1)

1998 (1)

R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1046 (1998).
[CrossRef]

1994 (1)

1990 (1)

D. Eimerl, S. Velsko, L. Davis, and F. Wang, Prog. Cryst. Growth Charact. Mater. 20, 59 (1990).
[CrossRef]

1987 (1)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Baltuška, A.

Beasley, J. D.

Binhammer, T.

Bonora, S.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, J. Opt. 12, 013001 (2010).
[CrossRef]

Brida, D.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, J. Opt. 12, 013001 (2010).
[CrossRef]

Bromage, J.

Butkus, R.

A. Dubietis, R. Butkus, and A. Piskarskas, IEEE J. Sel. Top. Quantum Electron. 12, 163 (2006).
[CrossRef]

Calegari, F.

G. Sansone, F. Calegari, and M. Nisoli, IEEE J. Sel. Top. Quantum Electron. 18, 507 (2012).
[CrossRef]

Cerullo, G.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, J. Opt. 12, 013001 (2010).
[CrossRef]

Chai, B.

Chiang, A. C.

Cirmi, G.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, J. Opt. 12, 013001 (2010).
[CrossRef]

Davis, L.

D. Eimerl, S. Velsko, L. Davis, and F. Wang, Prog. Cryst. Growth Charact. Mater. 20, 59 (1990).
[CrossRef]

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

De Silvestri, S.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, J. Opt. 12, 013001 (2010).
[CrossRef]

Demmler, S.

Dubietis, A.

A. Dubietis, R. Butkus, and A. Piskarskas, IEEE J. Sel. Top. Quantum Electron. 12, 163 (2006).
[CrossRef]

Düsterer, S.

Ebbers, C. A.

Eimerl, D.

D. Eimerl, S. Velsko, L. Davis, and F. Wang, Prog. Cryst. Growth Charact. Mater. 20, 59 (1990).
[CrossRef]

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Fei, Y.

Feldhaus, J.

Fuji, T.

Goswami, M.

S. C. Sabharwal, M. Goswami, S. K. Kulkarni, and B. D. Padalia, J. Mater. Sci. 11, 325 (2000).
[CrossRef]

Gottschall, T.

Graham, E. K.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Hädrich, S.

Halonen, L.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2009).
[CrossRef]

Harren, F. J. M.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2009).
[CrossRef]

Harth, A.

Huang, Y. C.

Jocher, C.

Jovanovic, I.

Kobayashi, T.

Kouta, H.

Krebs, M.

Kulkarni, S. K.

S. C. Sabharwal, M. Goswami, S. K. Kulkarni, and B. D. Padalia, J. Mater. Sci. 11, 325 (2000).
[CrossRef]

Kuwano, Y.

Lang, T.

Liao, Z. M.

Limpert, J.

Lin, S. T.

Lin, Y. Y.

MacDonald, M.

R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1046 (1998).
[CrossRef]

Manzoni, C.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, J. Opt. 12, 013001 (2010).
[CrossRef]

Marangoni, M.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, J. Opt. 12, 013001 (2010).
[CrossRef]

Morgner, U.

Neuenschwander, B.

R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1046 (1998).
[CrossRef]

Nikogosyan, N.

N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2010).

Nisoli, M.

G. Sansone, F. Calegari, and M. Nisoli, IEEE J. Sel. Top. Quantum Electron. 18, 507 (2012).
[CrossRef]

Padalia, B. D.

S. C. Sabharwal, M. Goswami, S. K. Kulkarni, and B. D. Padalia, J. Mater. Sci. 11, 325 (2000).
[CrossRef]

Peltola, J.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2009).
[CrossRef]

Persijn, S.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2009).
[CrossRef]

Piskarskas, A.

A. Dubietis, R. Butkus, and A. Piskarskas, IEEE J. Sel. Top. Quantum Electron. 12, 163 (2006).
[CrossRef]

Rausch, S.

Roos, M. B.

R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1046 (1998).
[CrossRef]

Röser, F.

Rossbach, J.

Rothhardt, J.

Sabharwal, S. C.

S. C. Sabharwal, M. Goswami, S. K. Kulkarni, and B. D. Padalia, J. Mater. Sci. 11, 325 (2000).
[CrossRef]

Sansone, G.

G. Sansone, F. Calegari, and M. Nisoli, IEEE J. Sel. Top. Quantum Electron. 18, 507 (2012).
[CrossRef]

Schlarb, H.

Schultze, M.

Seise, E.

Shy, J. T.

Tavella, F.

Tünnermann, A.

Vainio, M.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2009).
[CrossRef]

Velsko, S.

D. Eimerl, S. Velsko, L. Davis, and F. Wang, Prog. Cryst. Growth Charact. Mater. 20, 59 (1990).
[CrossRef]

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Villoresi, P.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, J. Opt. 12, 013001 (2010).
[CrossRef]

Wang, F.

D. Eimerl, S. Velsko, L. Davis, and F. Wang, Prog. Cryst. Growth Charact. Mater. 20, 59 (1990).
[CrossRef]

Weber, H. P.

R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1046 (1998).
[CrossRef]

Weber, R.

R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1046 (1998).
[CrossRef]

Willner, A.

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Weber, B. Neuenschwander, M. MacDonald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1046 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Dubietis, R. Butkus, and A. Piskarskas, IEEE J. Sel. Top. Quantum Electron. 12, 163 (2006).
[CrossRef]

G. Sansone, F. Calegari, and M. Nisoli, IEEE J. Sel. Top. Quantum Electron. 18, 507 (2012).
[CrossRef]

J. Appl. Phys. (1)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
[CrossRef]

J. Mater. Sci. (1)

S. C. Sabharwal, M. Goswami, S. K. Kulkarni, and B. D. Padalia, J. Mater. Sci. 11, 325 (2000).
[CrossRef]

J. Opt. (1)

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, J. Opt. 12, 013001 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Prog. Cryst. Growth Charact. Mater. (1)

D. Eimerl, S. Velsko, L. Davis, and F. Wang, Prog. Cryst. Growth Charact. Mater. 20, 59 (1990).
[CrossRef]

Other (1)

N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Measured temperature increase versus pump laser repetition rate. The numbers represent the signal output power.

Fig. 2.
Fig. 2.

(a) Calculated phase-matching curves for two different temperatures. Solid black line, propagation angle of the measured fluorescence. (b) Measured fluorescence spectra at different repetition rates (2 mm BBO, 100 μJ). Arrows indicate the shift of the curves with rising temperature.

Fig. 3.
Fig. 3.

Results of a simulation performed with ANSYS. (a) T, temperature difference. (b) σ, tensile stress. Crystal dimensions 5mm×5mm×2mm; due to symmetry only half the crystal is modeled; θ=22°; beam diameter 350 μm; thermal conductivity taken from [13]. Thermal load, 220 mW (pump absorption at 1 MHz repetition rate), Gaussian radial distribution. Heat flow, side surfaces 100W/m2K, front/rear surface 10W/m2K (convection only).

Fig. 4.
Fig. 4.

Measured temperature increase versus pump laser repetition rate (2 mm BBO, 100 μJ).

Metrics