Abstract

An elegant way of achieving an ultracompact optical fiber in-line Mach–Zehnder interferometer is to create an inner air cavity in a section of microfiber. The sandwich structure splits the light propagating in the fiber into two beams: one passes through the inner air cavity and the other travels along the silica wall of the cavity before recombining at the cavity end, resulting in an interference fringe pattern. Such a device is applied for strain measurement with a high sensitivity of 6.8pm/με.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
    [CrossRef]
  2. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, Opt. Express 15, 14123 (2007).
    [CrossRef]
  3. Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, Opt. Lett. 32, 2662 (2007).
    [CrossRef]
  4. M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, Opt. Express 20, 21946 (2012).
    [CrossRef]
  5. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, Opt. Express 20, 7112 (2012).
    [CrossRef]
  6. B. Kim, T. H. Kim, L. Cui, and Y. Chung, Opt. Express 17, 15502 (2009).
    [CrossRef]
  7. Z. Tian and S. S.-H. Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
    [CrossRef]
  8. P. Lu and Q. Chen, IEEE Photon. J. 2, 942 (2010).
    [CrossRef]
  9. G. Chen, H. Xiao, Y. Huang, Z. Zhou, and Y. Zhang, Proc. SPIE 7292729212 (2009).
  10. Frazão, S. F. O. Silva, A. Guerreiro, J. L. Santos, L. A. Ferreira, and F. M. Araœjo, Appl. Opt. 46, 8578 (2007).
    [CrossRef]

2012

2010

P. Lu and Q. Chen, IEEE Photon. J. 2, 942 (2010).
[CrossRef]

2009

G. Chen, H. Xiao, Y. Huang, Z. Zhou, and Y. Zhang, Proc. SPIE 7292729212 (2009).

Z. Tian and S. S.-H. Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
[CrossRef]

B. Kim, T. H. Kim, L. Cui, and Y. Chung, Opt. Express 17, 15502 (2009).
[CrossRef]

2007

1995

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Araœjo, F. M.

Araujo, L.

Berkoff, T. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Bierlich, J.

Bouwmans, G.

Chen, G.

G. Chen, H. Xiao, Y. Huang, Z. Zhou, and Y. Zhang, Proc. SPIE 7292729212 (2009).

Chen, Q.

P. Lu and Q. Chen, IEEE Photon. J. 2, 942 (2010).
[CrossRef]

Cheng, G. H.

Chung, Y.

Cui, L.

Deng, M.

Duan, D. W.

Favero, F. C.

Ferreira, L. A.

Ferreira, M. S.

Finazzi, V.

Frazão,

Frazão, O.

Friebele, E. J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Guerreiro, A.

Huang, Y.

G. Chen, H. Xiao, Y. Huang, Z. Zhou, and Y. Zhang, Proc. SPIE 7292729212 (2009).

Jones, R. T.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Kersey, A. D.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Kim, B.

Kim, T. H.

Kobelke, J.

Lu, P.

P. Lu and Q. Chen, IEEE Photon. J. 2, 942 (2010).
[CrossRef]

Pruneri, V.

Putnam, M. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Rao, Y. J.

Santos, J. L.

Schuster, K.

Silva, S. F. O.

Singh, H.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Sirkis, J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Tian, Z.

Z. Tian and S. S.-H. Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
[CrossRef]

Villatoro, J.

Xiao, H.

G. Chen, H. Xiao, Y. Huang, Z. Zhou, and Y. Zhang, Proc. SPIE 7292729212 (2009).

Yam, S. S.-H.

Z. Tian and S. S.-H. Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
[CrossRef]

Yang, X. C.

Zhang, Y.

G. Chen, H. Xiao, Y. Huang, Z. Zhou, and Y. Zhang, Proc. SPIE 7292729212 (2009).

Zhou, Z.

G. Chen, H. Xiao, Y. Huang, Z. Zhou, and Y. Zhang, Proc. SPIE 7292729212 (2009).

Zhu, T.

Appl. Opt.

IEEE Photon. J.

P. Lu and Q. Chen, IEEE Photon. J. 2, 942 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Tian and S. S.-H. Yam, IEEE Photon. Technol. Lett. 21, 161 (2009).
[CrossRef]

J. Lightwave Technol.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, and M. A. Putnam, J. Lightwave Technol. 13, 1256 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

G. Chen, H. Xiao, Y. Huang, Z. Zhou, and Y. Zhang, Proc. SPIE 7292729212 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Microhole fabricated by fs laser ablation at the center of the cleaved SMF end facet. (b) Hollow sphere formed after fusion splicing with another section of cleaved SMF. (c) SEM image of the cross-section view of the hollow sphere. (d) Microfiber with an inner air cavity with length L. (e) Transmission spectrum of the microfiber in (d).

Fig. 2.
Fig. 2.

(a) Transmission spectra of microfiber MZIs with different cavity lengths of 270, 570, and 860 μm, respectively. (b) Corresponding optical microscope images of the microfiber MZIs.

Fig. 3.
Fig. 3.

(a) Evolution of transmission spectrum of sample S3 with axial strain ranging from 0 to 700 με. (b) Variation of dip wavelength with axial strain for different samples. Linear fitting gives a strain coefficient of 3.1±0.1pm/με, 5.4±0.1pm/με, and 6.8±0.2pm/μm for samples S1, S2, and S3, respectively.

Fig. 4.
Fig. 4.

(a) Simplified model of the microfiber MZI. The shadow region is the air cavity and the cross section of the tapered region is shown in the inset. (b) Calculated equivalent strain coefficient and measured strain sensitivity variation with taper section length.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I=I1+I2+2I1I2cos(2πLΔnλ),
λdip=2LΔn/(2m+1).
FSR=λ2/(ΔnL).
ΔλMZI=κε(taper)·εtaper=κε·ε,
εtaperEAtaper=εESMFASMF,
εtaperεSMF=ASMFAtaper.
κεκε(taper)=Ltaper+LSMFLtaper+LSMFVtaperLtaper·ASMF,

Metrics