Abstract

Simultaneous recording of two data pages by dual-channel polarization holography is experimentally demonstrated. Two data pages are transferred as two orthogonal scalar wave components of a vector wave. The signal vector wave and reference beam are superposed on a polarization-sensitive medium. The two recorded data pages are simultaneously and independently reconstructed. Furthermore, holographic angular multiplex recording is performed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, Opt. Lett. 18, 915 (1993).
    [CrossRef]
  2. D. Psaltis, M. Levene, A. Pu, and G. Barbastathis, Opt. Lett. 20, 782 (1995).
    [CrossRef]
  3. G. A. Rakuljic, V. Leyva, and A. Yariv, Opt. Lett. 17, 1471 (1992).
    [CrossRef]
  4. N. Kawatsuki, H. Takatsuka, T. Yamamoto, and O. Sangen, J. Polym. Sci. A 36, 1521 (1998).
    [CrossRef]
  5. A. V. Trofimova, A. I. Stankevich, and V. V. Mogilnyi, J. Appl. Spectrosc. 76, 585 (2009).
    [CrossRef]
  6. D. Barada, Y. Kawagoe, H. Sekiguchi, T. Fukuda, S. Kawata, and T. Yatagai, Proc. SPIE 7957, 79570Q (2011).
    [CrossRef]
  7. H. Li, S. Pu, G. Liu, W. Liu, and B. Yao, Front. Chem. China 5, 234 (2010).
    [CrossRef]
  8. D. Barada, T. Ochiai, T. Fukuda, S. Kawata, and T. Yatagai, Opt. Lett. 37, 4528 (2012).
    [CrossRef]
  9. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).
  10. S. H. Lin, P. Chen, C. Chuang, Y. Chao, and K. Y. Hsu, Opt. Lett. 36, 16 (2011).
    [CrossRef]
  11. K. Kuroda, Y. Matuhashi, R. Fujimura, and T. Shimura, Opt. Rev. 18, 374 (2011).
    [CrossRef]
  12. W. W. Peterson and E. J. Weldon, Error Correcting Codes, 2nd ed. (MIT, 1972), pp. 269–309.

2012 (1)

2011 (3)

S. H. Lin, P. Chen, C. Chuang, Y. Chao, and K. Y. Hsu, Opt. Lett. 36, 16 (2011).
[CrossRef]

D. Barada, Y. Kawagoe, H. Sekiguchi, T. Fukuda, S. Kawata, and T. Yatagai, Proc. SPIE 7957, 79570Q (2011).
[CrossRef]

K. Kuroda, Y. Matuhashi, R. Fujimura, and T. Shimura, Opt. Rev. 18, 374 (2011).
[CrossRef]

2010 (1)

H. Li, S. Pu, G. Liu, W. Liu, and B. Yao, Front. Chem. China 5, 234 (2010).
[CrossRef]

2009 (1)

A. V. Trofimova, A. I. Stankevich, and V. V. Mogilnyi, J. Appl. Spectrosc. 76, 585 (2009).
[CrossRef]

1998 (1)

N. Kawatsuki, H. Takatsuka, T. Yamamoto, and O. Sangen, J. Polym. Sci. A 36, 1521 (1998).
[CrossRef]

1995 (1)

1993 (1)

1992 (1)

Barada, D.

D. Barada, T. Ochiai, T. Fukuda, S. Kawata, and T. Yatagai, Opt. Lett. 37, 4528 (2012).
[CrossRef]

D. Barada, Y. Kawagoe, H. Sekiguchi, T. Fukuda, S. Kawata, and T. Yatagai, Proc. SPIE 7957, 79570Q (2011).
[CrossRef]

Barbastathis, G.

Chao, Y.

Chen, P.

Chuang, C.

Fujimura, R.

K. Kuroda, Y. Matuhashi, R. Fujimura, and T. Shimura, Opt. Rev. 18, 374 (2011).
[CrossRef]

Fukuda, T.

D. Barada, T. Ochiai, T. Fukuda, S. Kawata, and T. Yatagai, Opt. Lett. 37, 4528 (2012).
[CrossRef]

D. Barada, Y. Kawagoe, H. Sekiguchi, T. Fukuda, S. Kawata, and T. Yatagai, Proc. SPIE 7957, 79570Q (2011).
[CrossRef]

Hsu, K. Y.

Kawagoe, Y.

D. Barada, Y. Kawagoe, H. Sekiguchi, T. Fukuda, S. Kawata, and T. Yatagai, Proc. SPIE 7957, 79570Q (2011).
[CrossRef]

Kawata, S.

D. Barada, T. Ochiai, T. Fukuda, S. Kawata, and T. Yatagai, Opt. Lett. 37, 4528 (2012).
[CrossRef]

D. Barada, Y. Kawagoe, H. Sekiguchi, T. Fukuda, S. Kawata, and T. Yatagai, Proc. SPIE 7957, 79570Q (2011).
[CrossRef]

Kawatsuki, N.

N. Kawatsuki, H. Takatsuka, T. Yamamoto, and O. Sangen, J. Polym. Sci. A 36, 1521 (1998).
[CrossRef]

Kuroda, K.

K. Kuroda, Y. Matuhashi, R. Fujimura, and T. Shimura, Opt. Rev. 18, 374 (2011).
[CrossRef]

Levene, M.

Leyva, V.

Li, H.

H. Li, S. Pu, G. Liu, W. Liu, and B. Yao, Front. Chem. China 5, 234 (2010).
[CrossRef]

Lin, S. H.

Liu, G.

H. Li, S. Pu, G. Liu, W. Liu, and B. Yao, Front. Chem. China 5, 234 (2010).
[CrossRef]

Liu, W.

H. Li, S. Pu, G. Liu, W. Liu, and B. Yao, Front. Chem. China 5, 234 (2010).
[CrossRef]

Matuhashi, Y.

K. Kuroda, Y. Matuhashi, R. Fujimura, and T. Shimura, Opt. Rev. 18, 374 (2011).
[CrossRef]

Mogilnyi, V. V.

A. V. Trofimova, A. I. Stankevich, and V. V. Mogilnyi, J. Appl. Spectrosc. 76, 585 (2009).
[CrossRef]

Mok, F. H.

Nikolova, L.

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

Ochiai, T.

Peterson, W. W.

W. W. Peterson and E. J. Weldon, Error Correcting Codes, 2nd ed. (MIT, 1972), pp. 269–309.

Psaltis, D.

Pu, A.

Pu, S.

H. Li, S. Pu, G. Liu, W. Liu, and B. Yao, Front. Chem. China 5, 234 (2010).
[CrossRef]

Rakuljic, G. A.

Ramanujam, P. S.

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

Sangen, O.

N. Kawatsuki, H. Takatsuka, T. Yamamoto, and O. Sangen, J. Polym. Sci. A 36, 1521 (1998).
[CrossRef]

Sekiguchi, H.

D. Barada, Y. Kawagoe, H. Sekiguchi, T. Fukuda, S. Kawata, and T. Yatagai, Proc. SPIE 7957, 79570Q (2011).
[CrossRef]

Shimura, T.

K. Kuroda, Y. Matuhashi, R. Fujimura, and T. Shimura, Opt. Rev. 18, 374 (2011).
[CrossRef]

Stankevich, A. I.

A. V. Trofimova, A. I. Stankevich, and V. V. Mogilnyi, J. Appl. Spectrosc. 76, 585 (2009).
[CrossRef]

Takatsuka, H.

N. Kawatsuki, H. Takatsuka, T. Yamamoto, and O. Sangen, J. Polym. Sci. A 36, 1521 (1998).
[CrossRef]

Trofimova, A. V.

A. V. Trofimova, A. I. Stankevich, and V. V. Mogilnyi, J. Appl. Spectrosc. 76, 585 (2009).
[CrossRef]

Weldon, E. J.

W. W. Peterson and E. J. Weldon, Error Correcting Codes, 2nd ed. (MIT, 1972), pp. 269–309.

Yamamoto, T.

N. Kawatsuki, H. Takatsuka, T. Yamamoto, and O. Sangen, J. Polym. Sci. A 36, 1521 (1998).
[CrossRef]

Yao, B.

H. Li, S. Pu, G. Liu, W. Liu, and B. Yao, Front. Chem. China 5, 234 (2010).
[CrossRef]

Yariv, A.

Yatagai, T.

D. Barada, T. Ochiai, T. Fukuda, S. Kawata, and T. Yatagai, Opt. Lett. 37, 4528 (2012).
[CrossRef]

D. Barada, Y. Kawagoe, H. Sekiguchi, T. Fukuda, S. Kawata, and T. Yatagai, Proc. SPIE 7957, 79570Q (2011).
[CrossRef]

Front. Chem. China (1)

H. Li, S. Pu, G. Liu, W. Liu, and B. Yao, Front. Chem. China 5, 234 (2010).
[CrossRef]

J. Appl. Spectrosc. (1)

A. V. Trofimova, A. I. Stankevich, and V. V. Mogilnyi, J. Appl. Spectrosc. 76, 585 (2009).
[CrossRef]

J. Polym. Sci. A (1)

N. Kawatsuki, H. Takatsuka, T. Yamamoto, and O. Sangen, J. Polym. Sci. A 36, 1521 (1998).
[CrossRef]

Opt. Lett. (5)

Opt. Rev. (1)

K. Kuroda, Y. Matuhashi, R. Fujimura, and T. Shimura, Opt. Rev. 18, 374 (2011).
[CrossRef]

Proc. SPIE (1)

D. Barada, Y. Kawagoe, H. Sekiguchi, T. Fukuda, S. Kawata, and T. Yatagai, Proc. SPIE 7957, 79570Q (2011).
[CrossRef]

Other (2)

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University, 2009).

W. W. Peterson and E. J. Weldon, Error Correcting Codes, 2nd ed. (MIT, 1972), pp. 269–309.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for dual-channel polarization holography. ND, L, BE, HWP, QWP, PBS SLM, and CCD are the neutral density filter, lens, beam expander, half-wave plate, quarter-wave plate, polarization beam splitter, spatial light modulator, and charge-coupled-device camera, respectively.

Fig. 2.
Fig. 2.

Recording data pages inputted to the SLMs.

Fig. 3.
Fig. 3.

Partial area of the data pages inputted to the SLMs. (a)–(d) were recorded with s components of the signal beam when the rotation angles were 0, 0.3, 0.6, and 0.9 deg, respectively. (e)–(h) were recorded with p components of the signal beam when the rotation angles were 0, 0.3, 0.6, and 0.9 deg, respectively.

Fig. 4.
Fig. 4.

Partial area of the data pages captured by CCD cameras. (a)–(d) were captured by CCD1 when the rotation angles were 0, 0.3, 0.6, and 0.9 deg, respectively. (e)–(h) were captured by CCD2 when the rotation angles were 0, 0.3, 0.6, and 0.9 deg, respectively.

Fig. 5.
Fig. 5.

Normalized diffraction efficiency.

Tables (1)

Tables Icon

Table 1. SER Values of Reconstructed Data Pages for the Rotation Angle

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

US=USp+USs,
UR=ARexp(iϕR)[010],
USp=ASpexp(iϕSp)[cosθS0sinθS],
USs=ASsexp(iϕSs)[010],
U(r)=USexp(ikS·r)+URexp(ikR·r),
kS=[ksinθS0kcosθS],
kR=[ksinθR0kcosθR],
VSηBAR2US+W(W·k^R)k^R,
W=ηA(US·UR*)UR+ηB(US·UR)UR*=(ηA+ηB)AR2USs,
VSηBAR2USp+(ηA+2ηB)AR2USs.
SER=NeNt×100[%],

Metrics